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Abstract—Security failures in real-time embedded systems can
have catastrophic effects and can lead to injury to (or even loss
of life for) humans, damage to the system and also environmental
fallouts. Until recently security was an afterthought in the design
of such systems. Even less understood are attack mechanisms that
target real-time systems.

In this paper we present a novel attack model and algorithm
to extract the exact schedules of real-time systems designed using
fixed priority algorithms. The attack is demonstrated on a real
hardware platform and shows a high success rate. The leaked
schedules are then used to launch a side-channel attack against
a specific victim task. Our algorithm is robust in the presence of
some schedule randomization defenses as well as jitters.

I. INTRODUCTION

Real-time embedded systems are all around us. They find
use in a variety of domains such as aircraft, automobiles,
medical devices, space vehicles, industrial control systems
and nuclear power plants to name just a few. Many of these
systems also have safety-critical requirements so any problems
that deter from the normal operation of such systems could
result in damage to the system, the environment and even
pose a threat to human safety. Traditionally, security has often
been an afterthought in the design of real-time systems since
they used custom hardware, software and protocols and were
often not connected to the external world. These assumptions
are increasingly being challenged due to the rise in the use
of common-off-the-shelf (COTS) components in new real-
time systems and the drive towards remote monitoring and
control facilitated by the growth of the Internet. Due to the
critical nature of such systems successful attacks could lead to
problems more serious than just loss of data or availability. The
explosion in growth of embedded devices, e.g., the internet-of-
things (IoT), smart meters, etc. just exacerbates the problem.
While there exists some recent work on security for real-time
systems [20]–[22], [30]–[32], there is not much focus on attack
mechanisms for such systems. In this paper, we focus on this
latter, important, aspect of security for real-time systems.

Due to the safety issues mentioned above, real-time sys-
tems are also designed with great care and significant engineer-
ing effort to operate in a predictable manner. For instance, (a)
designers take great care to ensure that the constituent tasks in
such systems execute at well determined points in time [17],
(b) their interrupts are carefully managed [34], (c) the memory
management is deterministic1 [16], (d) the execution of code
on the processor is also analyzed to great degree (both, at
compile time as well as run-time) [28], etc.

This deterministic property can be a double edged sword.
On the one hand, the predictable behavior often makes it

1For instance, many such systems have no virtual memory management and
may even turn off their data caches.

easier for adversaries to gauge the behavior of the system
with high precision. This can increase the success rates for
certain attacks, e.g., side-channel [14] or even covert-channel
attacks [26]. Consider the system presented in Figure 1. This
high-level UAV design includes a camera that can be used for
surveillance. Ideally an attacker would like to leak the camera
images that are captured as a result. If this is difficult (say,
due to the use of encryption) then the next best thing would
be to identify locations of high-interest targets. This can be
achieved by observing the cache usage of the camera task
(or even image encoding task). If the cache usage is high,
then a higher resolution image has been captured. If low, it
is an indication that the camera (the victim in this case) is
operating in a lower resolution mode. This information (camera
in higher resolution mode) coupled with location information
(e.g., GPS data) can be really valuable to an adversary2.
Adversaries could also use the knowledge of the exact behavior
to launch targeted attacks, e.g., denial-of-service where low
level system resources (e.g., caches, system buses, etc. ) are
made unavailable by overloading them at critical points in time
(say, when a high priority task is about to execute).

On the other hand, any deviations from the expected
behavior is suspicious and easier to detect (when compared to
general purpose systems) so attackers must operate within nar-
row operational parameters (e.g., stringent timing and resource
constraints) if they are to avoid detection. This is particularly
true in the case of side-channel and covert-channel attacks.
Often such attacks require precise knowledge of when the vic-
tim task is about to execute [3], [14], [18] so that the attacker
has the highest chances for success. To this end, adversaries
probe the system in a repeated manner. An increased probing
frequency will also increase the chance of identifying the

2We discuss this in more detail in Section II.

Figure 1: A high-level design of an unmanned aerial vehicle
platform(UAV).



victim’s execution points. In a real-time system, this probing
mechanism might be easily detected. If attackers perturb the
system too much then (i) they will be detected right away since
other tasks will miss their constraints (often represented as
timing constraints called deadlines) and (ii) the attacks will not
succeed since the system’s operation has been impeded3(for
instance, in the camera example, the adversary might want
to track all the points where the camera was operated in a
higher resolution mode). Figure 2a shows the normal execution
of two real-time tasks that meet their constraints (deadlines).
Figure 2b depicts the situation when a “probing task” (labeled
as “Attacker” in the Figure) is introduced into the system.
The increase in system utilization (i.e., the extra execution)
due to the probe results in a regular real-time task missing
its deadline, thus leading to detection and also putting the
operational safety of the entire system at risk.

(a) Without attacker’s task.

(b) With attacker’s task involved.

Figure 2: An example of schedules with or without attacker’s
task: (a) shows the normal schedule when no attacker is
involved and (b) demonstrates that a thoughtlessly planned
attack may lead to malfunction of the existing tasks.

Hence, a successful attack on real-time systems necessitates
the following (a) the ability to accurately reconstruct the
behavior of the system which, in this context, should be the
points in time when one or more victim tasks execute and
(b) avoid detection during the attack process by not changing
the system behavior. We demonstrate methods that achieve
both of the above. We present algorithms to reconstruct (and
hence,leak) the precise schedule of the system (Section III) and
avoiding detection by hijacking the idle task (Sections II and
V)4. Specifically, we focus on hard real-time systems designed
around fixed priority algorithms [7], [17], [19] since these are
the most common class of real-time scheduling algorithms
found in practice today [19]. Also, this class of scheduling
algorithms is most vulnerable to such attacks since they have
the most stringent constraints (hence they are very predictable).

We evaluate our approach using an actual implementation
(Section V) of the attack on a hardware board. The board (an
ARM-based Zedboard) implements the aforementioned UAV
model [22] on a real-time operating system that also presents

3Assuming, of course, that the attacker’s motivation was to steal information
undetected.

4We do not change the system utilization by hijacking the idle task – we
only consume the slack that was already present in the system. We discuss
this in detail in the following sections.

the vendor-based development model (Section II) that, in fact,
can increase the chances for attackers to insert code due to the
chaos inherent in such processes. We also carry out exhaustive
simulations to understand the design space for such algorithms.

In summary, the main contributions of this paper are,

1) an attack scheme aimed at leaking the schedule of
fixed priority hard real-time systems – this involves
development of algorithms capable of reconstructing
the schedule of the system;

2) implement and evaluate the attack scheme (and neces-
sary algorithms) using a realistic embedded platform
and exhaustive simulations and

3) demonstrate one use case where a leaked schedule
can be used to launch other attacks (e.g., a cache-
based side-channel attack) (Section IV).

II. SYSTEM AND ADVERSARY MODEL

A. System Model

In this paper, a hard real-time system with fixed-priority
scheduling (e.g., Rate Monotonic (RM) algorithm [17]) is
considered. Such system contains a task set Γ = {τ1, ..., τn}
consisting of n periodic hard real-time tasks. Each task τi,
1 ≤ i ≤ n, is characterized by pi, ci, di and pri(τi), as
shown in Figure 3, in which pi is the period, ci specifies
the worst execution time, di shows the deadline and pri(τi)
indicates the priority of the task τi. Note that all tasks in Γ
are indexed by descending priorities and priorities are distinct,
i.e., pri(τi) > pri(τi+1), and every task has a diverse period.

Figure 3: A real-time task τi is characterized by pi, ci, di and
pri(τi) which represent the period, execution time, deadline
and priority of task τi.

Additionally, let HP (τi), HP (τi) ⊂ Γ, denote the task
set that contains tasks with priorities higher than τi. Similarly,
LP (τi), LP (τi) ⊂ Γ, represents the task set that has tasks
with lower priorities than τi. Besides, we define the notation
Γ(i,n) = {τi, τi+1, ..., τn} to be a subset of the task set Γ.
Thus, according to this definition, Γ(1,n) has equivalent task
set as Γ. For ease of illustration of the proposed analysis
algorithm in later sections, the schedule of the specified hard
real-time system is modeled by a set of intervals denoted by
V . Furthermore, V consists of two subsets: (i) a subset of busy
intervals [6], defined as W = {ω1, ..., ωm} which contains m
busy intervals, and (ii) a subset of idle intervals, ID = V −W
as shown in Figure 4. Each busy interval ωk, 1 ≤ k ≤ m,
comprises zero or more jobs of τi, 1 ≤ i ≤ n, that are
scheduled, execute and complete in this interval. Let Nk(τi)
(≥ 0), denote the number of jobs of τi that are enclosed in ωk,
thus the duration of the busy interval can be computed as:

C(ωk) =

n∑
i=1

(Nk(τi) · ci) (1)

To depict the schedule of a busy interval, let Sk be an
array set and Sk(τi) represent an array storing the start times
for each job of τi in ωk. For example, if τi has Nk(τi) = 2

2



Figure 4: An example of a schedule which is modeled by
busy intervals W and idle intervals ID. In this example, there
are four distinct busy intervals {ωk, ..., ωk+3}. In each busy
interval, a color block represents an instance of a task.

jobs in ωk, then Sk(τi) contains two start times corresponding
to the two jobs. Let Ts(ωk) be the start time of ωk. Then it is
sufficient to depict ωk with the 3-tuple {Ts(ωk), C(ωk), Sk}
where Ts(ωk) is the start time of ωk, C(ωk) is it’s length and
Sk specifies the start times of all enclosed jobs.

Note that the start time of a job is used to capture the
schedule in a busy interval here instead of its arrival time
because our focus is more on the output of the scheduler in this
paper. The arrival time pinpoints the instant when a job is ready
to be scheduled and being put in the ready queue but not the
instant when a job is truly being executed. Simulation of the
scheduling algorithm is needed to obtain the latter (start time)
from the former (arrival time). However, it’s worth mentioning
that, in our analysis algorithm, it is necessary to infer arrival
times before the start times can be computed. Therefore, we
define Ak(τi) as an array that indicates the arrival time for
each job of τi in ωk. Figure 5 shows an illustration of the
introduced real-time system model, while the notation used is
summarized in Table I.

Table I: Glossary of real-time system notations.

Symbol Definition
Γ a set of n real-time tasks {τ1, ..., τn}
τi a real-time task
pi period of τi
di deadline of τi
ci execution time (computation time) of τi
pri(τi) priority of τi, smaller value represents higher priority

V an interval set representing schedules, V = ID +W
ID idle interval set
W busy interval set {ω1, ..., ωm}
ωk a busy interval
Ts(ωk) start time of ωk

C(ωk) duration of ωk

Nk(τi) the number of jobs of τi enclosed in ωk

Sk(τi) an array storing the start times for each job of τi in ωk

Ak(τi) an array storing arrival times for each job of τi in ωk

1) Example System: Avionics Demonstrator: In order to
motivate and evaluate the presented research, we use the
example of the Electronic Control Unit (ECU) for an avionics
system depicted in Figure 1. This demonstrative system, runs
many of the same types of tasks which could be expected to run
on an Unmanned Aerial Vehicle (UAV) surveillance system.
The ECU communicates locally with the inertial sensors, GPS
localization system and actuators (“UAV” in the figure), as
well as a camera subsystem. The ECU also uses off-board
communication to exchange information with a base station.
We assume that three parties are involved in building the ECU
system, Vendor 1, Vendor 2, and the Integrator. Each party
is responsible for a different ECU subsystem, which in turn
comprises different real-time tasks.

Vendor 1 is responsible for the image subsystem. The I/O
Operation Task mimics the behavior of a camera driver. The
Encoder Task is realized as a JPEG compressor. Encryption

Figure 5: An illustration of the real-time system model used
in this paper. Downward arrows represent arrival times of
periodic jobs and upward arrows indicate the start times of
corresponding jobs. Note that pri(τi) > pri(τj) in this case.

Task uses the AES cipher using a protected, secret key. The
encrypted image is then passed to the network manager in the
Integrator subsystem. Vendor 2 is responsible for the control
subsystem. The Sensor Task receives and parses incoming
sensor data for the other tasks. The Laws Task computes
the control output to move the UAV towards a way-point
determined by the Mission Planner in the Integrator subsys-
tem. Finally, the Actuator Task prepares the actual output
commands and send them to physical actuators. Finally, the
Integrator is responsible for connecting the two previous sub-
systems together and performing mission control. The Mission
Planner Task communicates with the Laws Task to determine
the current position of the UAV and move it between a set
of fixed way-points. Network Manager sends encrypted data
from Mission Planner and Encryption Task to the base station.

B. Adversary Model

Reconnaissance is often the first step in attacking a system
and it is in the interest of the attacker to stay undetected during
this time to, (i) both collect necessary information to enable his
attacks and (ii) to not alert system operators whose defensive
actions might make attacking the system more difficult. In
real-time systems having knowledge about system operation is
even more important than in enterprise settings as unsuccessful
attacks can more easily be detected due to the deterministic and
predictable nature of the system. In the now famous Stuxnet
attack [8], it is believed that the malware remained undetected
for months before its eventual discovery. Similarly, the goal of
the adversary in our model is to steal information undetected
rather than to disable or disrupt the real-time system.

Further, we also assume that the adversary has a foothold
on the real-time system. That is, he is able to run one or more
tasks in the system. This could be achieved in many different
ways. For example, taking into account the multi-vendor de-
velopment model used for many complex real-time systems, an
adversary could gain access through a compromised software
supply-chain of one of the vendors. Since it is difficult for the
system integrator to inspect every detail of the written code
from participating vendors, it leaves room for unknown flaws
in vendor’s side for adversaries to exploit.

We also assume that the adversary has knowledge of the
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number of tasks, their periods and execution times. The adver-
sary may obtain this information through social engineering or
in real-time from the system as this information is available to
the task scheduler. The attacker’s goal then is to leverage this
information to steal information from or about the system’s
operation without being detected. Specifically, our focus will
be on reconstructing the system’s task schedule so targeted
stealthy attacks can be launched on tasks of interest.

C. Attack Model

Task Priority Correlations: In a real-time system that uses
Rate-Monotonic scheduling algorithm, each task is prioritized
based on it’s period instead of its purpose or other attributes
such as security level. Thus, it is possible that a low security
task with a short period is assigned a relatively higher priority.
The preempting capability of a high priority task gives an
attacker opportunities to launch a variety of attacks, e.g., cache-
timing based side-channel attack, against tasks being pre-
empted. On the other hand, although tasks with lower priorities
are seemingly valueless, the nature of being preempted makes
them exceptionally useful in monitoring the system behavior,
for example, measuring the execution time of the task that
preempts it. Hence, each priority level is actually beneficial
to attackers in different ways. Intuitively, compromising the
highest and lowest priority tasks will provide the attacker
opportunities to (i) launch attacks on any other task, and (ii)
to monitor and learn the execution times of all other tasks.

However, when there are multiple tasks that have priorities
lower than the compromised task, it is hard for the adversary
to identify which task it is preempting as well as to isolate
valuable information regarding a specific task from the cap-
tured data. Similarly, when there are multiple tasks with higher
priorities than the compromised task, since more than one task
can be scheduled simultaneously and preempt it, information
that the compromised task gains can actually be a composition
of information due to multiple tasks making it difficult to
directly use it without further analysis.

Idle Task Manipulation: In order to monitor all tasks at
all times, we propose to hijack the idle task instead of the
lowest priority task. Idle task, by definition, is the function that
the scheduler calls when there is no active task or scheduled
task waiting in ready queue. The way that the idle task
is implemented in practice varies from system to system.
Different from generic computers where systems either enter
sleep mode or lower the CPU frequency when idling, real-time
systems that require predictability and timeliness tend to keep
CPUs up and consume unused slack time. Take FreeRTOS as
an example, it maintains an idle task which contains nothing
but an infinite while loop to exhaust the idle time.

Therefore, one can say that the idle task is logically
the lowest priority task in a real-time system. It inherits all
potentials from the legitimate lowest priority task h1, yet it
has no limit in period, i.e., idle task has an infinite deadline.
Thus the idle task can actually monitor the execution state of
a system rather than any specific task. What the idle task can
capture are busy intervals, W as defined earlier in SectionII-A,
that are composed of arbitrary subsets of tasks in Γ. Since
RM scheduling is static, the compositions of busy intervals as
well as the schedule should be predictable and deterministic.

Figure 6: Attack route of the schedule-based attack scheme.

In this work we propose a schedule reconstruction algorithm
that can analyze captured busy intervals along with the system
profile (the number of tasks, periods and execution times) that
is available to the adversary.

Attack Scheme: The goal of the adversary is to locate the
execution (job) of a selected task and launch information
stealing attacks on it without being detected. Our proposed
attack utilizes side channels to collect system data (i.e., busy
intervals) and reconstruct the system schedule which can be
used to predict the next start time of a selected task.

As shown in Figure 6, everything starts with the compro-
mised task hj which the adversary owns initially. The task
hj maintains a state machine that injects a malicious function
into idle task in run time. Once the injection is complete, task
hj switches back to normal state and continues it’s original
and legitimate function. Hijacked idle task implements another
state machine that has three stages: (i) capturing busy intervals,
(ii) analyzing busy intervals (or inferring context of busy
intervals) and (iii) triggering attacks.

In the next section, we will elaborate on the algorithm
implemented in the hijacked idle task to capture busy intervals
and reconstruct the schedule.

III. RECONSTRUCTION OF SCHEDULES

As mentioned earlier, our friendly neighborhood attacker’s
main objective is to capture (or reconstruct if the observations
are not of sufficient quality) the exact schedule of real-time
tasks that execute in the system. The final goal could be
to launch an attack on one more victim tasks to gather
information (via side-channel attacks as seen in Section V-B)
or perhaps reduce the availability of low level resources
during the execution of critical tasks (or any number of other
objectives such as setting up a covert channel). In any case,
reconstructing (and thus, leaking) the schedule of the system is
a first, crucial, step. This section introduces a novel algorithm
that uses the predictable, periodic, nature of hard real-time
systems to carry out such a reconstruction. The output of the
algorithm is the list of start times of the tasks in the system
(that can help locate the precise execution intervals of victim
tasks at run-time).

We now present the reconstruction algorithm that we name
“ScheduLeak”5. The sequence of steps is summarized in
Figure 7. The high-level components of ScheduLeak are:

5Since its main objective is to “leak” the schedule of the system).
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Figure 7: Attack flow of the proposed scheme between mali-
cious task and idle task.

[Step 1:] Capturing Busy Intervals: The first step is to
capture busy intervals during the execution of the system. The
observer task6 infers the length of busy intervals by noting
the points in time when it7 was scheduled (further details
are provided later in the paper). This gives us a set of busy
intervals, W = {ω1, ..., ωm} where Ts(ωk) is the start time of
each interval, ωk, and C(ωk) is its duration. [Section III-A]

[Step 2:] Estimating Nk(τi): Using the busy interval set, W ,
and the system profile (period and execution time of each task)
we next estimate the number of tasks involved in each busy
interval. That is, finding Nk(τi) for each task τi in each busy
interval ωk. [Section III-B]

[Step 3:] Inferring Arrival Windows A(τi) for each task τi:
The estimated Nk(τi) values are used to calculate possible
arrival windows in ωk for each τi. [Section III-C.]

[Step 4:] Eliminating Mismatched Nk(τi) Estimates: In
some cases, A(τi) for a task τi may include multiple uncertain
inferences. In order to eliminate this ambiguity, current arrival
windows are used to validate the estimated Nk(τi) values from
Step 1. The updated Nk(τi) value is used to further narrow
down the arrival window. [Section III-D]

[Step 5:] Reconstructing Schedules: The arrival window,
A(τi), of τi is then converted to a specific arrival time point,
A(τi). With the exact A(τi)’s available for all busy intervals
we can generate the start times of corresponding jobs, say,
by using a fixed priority scheduling simulator iterating over
the busy interval, ωk. If necessary, iterating over every busy
interval to get Sk, 1 ≤ k ≤ m, we can reconstruct complete
schedule that can now be used to launch further attacks (see
Section IV). [Sections III-E and III-F]

A. Capturing Busy Intervals

Recall from the system model section, a schedule can be
represented by V = ID∪W . By getting busy intervals W one
can potentially reconstruct the whole intervals V , since they

6While in our system the observer is the Idle task, this need not be the case
in all such attacks. In this paper we will use “observer task” and “idle task”
interchangeably and make the distinction when it is necessary.

7The observer task itself.

are like a shadow of the schedule. Also, due to the determinism
in a fixed-priority hard real-time system the schedule of a
given task set is predictable. As a result, schedule repeats every
hyper-period. The hyper-period of task set Γ = {τ1, ..., τn} is:
Hyper Period = lcm(p1, ..., pn). Hence, the number of unique
busy intervals in the schedule is limited. Busy intervals within
one hyper-period will suffice for reconstructing schedules of
hard real-time systems.

To capture a busy interval, the idle task checks whether
itself has been preempted (details in later sections). When
a preemption is detected, a busy interval, ωk, is found. The
duration between preemptions is C(ωk) and the start time of
this busy interval is to Ts(ωk). The detailed mechanism for
capturing a busy interval is presented in Algorithm 3.

The process of capturing one busy interval repeats until the
idle task collects all busy intervals within one hyper-period.
Eventually, we get a busy interval set W = {ω1, ..., ωm} for
one hyper-period. Each busy interval ωk contains its start time
Ts(ωk) and measured duration C(ωk). W is then passed to
the next step of the algorithm.

B. Estimate of Nk(τi)

The goal of this step is to estimate the number of arrivals of
each task in each of the busy intervals captured in the previous
step, i.e., finding Nk(τi), 1 ≤ k ≤ m, 1 ≤ i ≤ n.

Considering the busy interval ωk, the duration can be
calculated by Equation (1). For any task τi, it may either
contribute nothing or contribute one or more jobs to ωk (i.e.,
0 ≤ Nk(τi)). But, given the duration C(ωk) of the busy
interval, the number of jobs for a task τi depends on its period
and execution time. Therefore, knowing the period and the
execution time of every task, we can reduce the number of
possibilities for the value of Nk(τi). The estimation of the
possible number of jobs for τi in busy interval wk is done using
the following theorem. This theorem gives the exact value of
Nk(τi) or in the worst case reduces the possible candidates
for Nk(τi) to only 2 values.

Theorem 1. For given values of pi, ci, C(ωk):
(i) If C(ωk) satisfies

(N · pi − ci)+ ≤ C(ωk) < N · pi + ci, (2)

then busy interval ωk can only contain N jobs for the task τi.

(ii) If C(ωk) satisfies

N · pi + ci ≤ C(ωk) < (N + 1) · pi − ci, (3)

then busy interval ωk can only contain N or N + 1 jobs for
the task τi.

A formal proof of Theorem 1 is provided in Appendix A.
The proof relies on the fact that tasks are periodic. The
intuition behind the proof is as follows: We first note that a
busy interval contains a task if and only if it contains the arrival
time of that task, and then we consider the extreme cases of
the duration of a busy interval that can contain N arrivals of
a task. Note that Theorem 1 does not take into account the
impact of jitters, or uncertainty in the values of pi and ci. An
extended version of the theorem that considers those aspects
is provided in Appendix C.

5



Figure 8: Condition checks for estimating Nk(τi). The axis
indicates the busy interval’s duration which is a positive
number. Based on this duration, we can estimate Nk(τi). The
durations for which the estimation is N+0 and N+(0 or 1) is
illustrated in the figure.

The conditions of Theorem 1 are depicted in Figure 8.
Note that the number of arrivals for each task is estimated
separately and independently, and that some tasks may have
two candidate values for each interval: N and N + 1. This
ambiguity can only be eliminated when all tasks are considered
together with the duration of the specified busy interval. Recall
from Equation (1), that the duration of a busy interval is
sum of the number of jobs for each task times its execution
time. Therefore, in order to sort out the correct combination
of Nk = {Nk(τ1), ..., Nk(τn)} where Nk(τi) is either N or
N+1, we compute Equation (1) with all possible combinations
of Nk(τi). In the worst case that all Nk(τi)’s have two possible
values and all tasks are in a busy interval, there will be 2n pos-
sible combinations. Eventually, only those combinations that
satisfy Equation (1) are shortlisted for further consideration.

The following two examples illustrate the two possibilities:
one leads to a unique inference of Nk, and the other results
in multiple feasible Nk inferences. Assume that the idle task
has captured for one hyper-period (i.e., LCM(5, 6, 10) = 30)
and records following 4 busy intervals:
Example 1. Consider a task set Γ = {τ1, τ2, τ3} as follows:

pi ci

τ1 5 1
τ2 6 2
τ3 10 2

Busy Intervals Duration Timestamp
ω1 8 [0,8]
ω2 6 [10,16]
ω3 5 [18,23]
ω4 4 [24,27]

Taking busy interval ω1 as an example, by applying Theorem 1
to ω1 as shown in Figure 9, we can compute N1(τ1), N1(τ2)
and N1(τ3) values as follows:

pi ci Nk(τi)

τ1 5 1 1 or 2
τ2 6 2 1 or 2
τ3 10 2 1

∗C(ω1) = 8
We can now use Equation 1 to find possible N1 com-

binations that can lead to the given busy interval duration
C(ω1) = 8 as shown in the following table:

N1(τ1) N1(τ2) N1(τ3) C(ω1)
1 1 0 3
1 2 1 7
2 1 1 6
2 2 1 8

√
matched

∗C(ω1) = 8

In this case, only the combination of Nk = {2, 2, 1}
satisfies Equation 1 for a busy interval length of C(ω1) = 8.

Figure 9: Example 1, computing Nk(τi) values for ω1 based
on Theorem 1.

Example 2. This example demonstrates that multiple task
combinations could potentially result in a busy interval of a
given length. Here we use the same task set from Example 1
but consider a busy interval ω4 with duration C(ω4) = 3. The
Nk(τi) values are computed as follows:

pi ci Nk(τi)

τ1 5 1 0 or 1
τ2 6 2 0 or 1
τ3 10 2 0 or 1

∗C(ω4) = 3

Because every task has two candidate values, there will be
at most 23 = 8 possible combinations to be verified using
equation (1) as shown below:

N4(τ1) N4(τ2) N4(τ3) C(ω4)
0 0 0 0
0 0 1 2
0 1 0 2
0 1 1 4
1 0 0 1
1 0 1 3

√
matched

1 1 0 3
√

matched
1 1 1 5

∗C(ω4) = 3

The result in the table shows that even though most of the
task combinations are eliminated, there are still two feasible
combinations, N4 = {1, 0, 1} and N4 = {1, 1, 0}, that can
lead to a busy interval length of C(ω4) = 3. In this case, both
inferences will be retained for further processing.

C. Inference of Arrival Windows

The previous step only infers potential combinations of
tasks for a given busy interval but not their ordering within the
interval. In order to reconstruct the schedule, it is important
to infer the order of the tasks which depends on their start
times. However, inferring the start times of tasks is not intuitive
since a task may be postponed or preempted by the scheduling
algorithm based on its priority. Therefore, it is more reasonable
to infer the arrival times first and then estimate the start times
based on the arrival times. In order to estimate an arrival time,
we compute the possible window for that arrival, which we
call arrival window. Eventually we want to obtain a narrow
arrival window for each task in this step.
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(a)

(b)

Figure 10: Estimate of arrival time locations.

In order to identify potential arrival windows for a task,
we partition the busy interval ωk = [a, b] into the following
three types of segments for each task τi:
− 0-interval: The segments in which we know there is no
arrival.
− 1-interval: The segments in which we know there exists
exactly 1 arrival.
− 0-1-interval: The segments in which there may exist 0 or 1
arrival.

The partitioning of the busy interval is done using:

Theorem 2. Considering a task τi and a busy interval wk that
has start time a and end time equal to b.
The partitioning of the busy interval is done by using the
following equations:
(i) If τi has arrived exactly N times, then the for 1 ≤ j ≤ N
following segments are 1-interval:

Ak(τi)j = [a+ (j − 1)pi,

min{b− (N − j)pi − ci, a+ jpi − ci}]

(ii) If τi may have arrived either N or N + 1 times:
the following segments are 1-interval:

Ak(τi)j = [a+ (j − 1)pi, a+ jpi − ci] 1 ≤ j ≤ N

and the following segments are 0-1-interval:

Ak(τi)j = [a+ (j − 1)pi, b− ci] j = N + 1

where Ak(τi)j is the jth arrival window for task τi in busy
interval ωk.
In both cases, the remainder of the busy interval is 0-interval.

See Appendix D for the proof.

The main tool used in this theorem is the periodicity of the
tasks. Specifically, we use the fact that if a task τi cannot arrive
at a given time t, then it also cannot arrive at times t ± pi.
We find time instances where the task cannot arrive and we
have considered them as 0-intervals. Figure 10 shows the use
of Theorem 2. Part (a) depicts a case in which Nk(τi) = 3
and b− (3− j)pi− ci < a+ jpi− ci, for j = 1, 2, 3. Note the
obtained 1-intervals for τi in a busy interval should be repeated
every pi. Part (b) depicts a case in which Nk(τi) = 2or3 and
we are not able to determine whether the last interval contains
an arrival or not; hence, it will be a 0-1-interval.

Next, we will use the intervals obtained above to find
arrival windows. Because of the periodicity assumption, a task
must arrive exactly one time in each time interval of length
equal to its period. Moreover, without considering jitters, the
relative arrival time in each period should be consistent. If we
divide one hyper-period into intervals of length pi, we can
find the arrival window of τi by getting intersections of the
1-interval and 0-1-interval segments. The taken intersections
should satisfy the following three rules: (i) in each segment
of length pi there should be exactly one arrival; (ii) in each
1-interval there should be exactly one arrival; (iii) in each 0-
1-interval there should be at most one arrival.

Figure 11 shows different possible cases in taking intersec-
tions. Figure 11(a) shows the case that we have successfully
found a single intersection interval that satisfies the above
rules. Since the starting point of a task’s period is unknown
in this step, it is likely that a 1-interval and 0-1-interval
segment is fragmented by two separate sections, which may
lead to broken intersections as shown Figure 11(b). However,
if we restore the time line from the layered ones, adjacent
intersections form one continuous interval. In this case, the
two intersections can be united to be one arrival time window.

Also, in some cases, there may exist intermittent inter-
sections for a task’s arrival time window as depicted in
Figure 11(c). This situation is caused by the ambiguity induced
from 0-1-interval segments. Note that having 0-1-interval
segments is a necessary condition for ambiguity but not a
sufficient condition. The next step is to estimate the true arrival
window and eliminate the uncertainty posed by such cases.

Example 3. Consider the same task set from Example 1, here
we take task τ3 as an example to demonstrate how the arrival
window A(τ3) is derived. By following Theorem 2, four busy
intervals can be partitioned by 1-interval, 0-1-interval and 0-
interval as shown in Figure 12.

Once 1-interval and 0-1-interval are obtained, we can get
the intersections as shown in Figure 13(a). In this case, there
are two intersections which represents two possible arrival
windows A(τ3) = [0, 1] or A(τ3) = [4, 4] for task τ3.
Similarly, arrival windows for τ1 and τ2 can be computed as
A(τ1) = [0, 0] and A(τ2) = [0, 0], respectively. Similarly, the
arrival window for τ2 is shown in Figure 13(b) .

D. Eliminating Mismatched Nk Inferences

As illustrated in Figure 11(c), the ambiguity in arrival
windows is caused by 0-1-interval segments in each arrival
window. For the case in Figure 11(c), if one of the 0-1-interval
segments can be clarified as 1-interval, then we know that is
the correct arrival window. Since estimation of arrival windows
relies on 1-interval and 0-1-interval segment that are computed
based on Nk(τi) values, it is vital to eliminate ambiguity
from inferred Nk(τi) values. This can be done by applying
the arrival window A(τi) to each busy interval to validate the
estimated Nk(τi) values.

Note that the 0-1-interval of tasks are not independent.
For instance, in Example 3, if we knew the correct value of
Nk(τ2) and thus did not have a 0-1-interval segment for task
τ2, the 0-1-interval of task τ3 will also be removed. Thus,
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Figure 11: Examples of getting intersections for the arrival window A(τi).
Figure 12: Example 3, partition busy intervals
{ω1, ...ω4} for τ3 based on Theorem 2.

reduced ambiguity in one task can lead to reduced ambiguity
in multiple other tasks.

Figure 14 presents the process of removal of mismatched
Nk(τi) to a busy interval ωk with ambiguous Nk(τi) values by
applying inferred arrival windows A(τi). This figure considers
the simple case where the arrival window is a continuous
interval (shown by the black rectangle in the figure). That
is, the result of the process of getting intersections explained
above is the black rectangles, which as expected is repeating
every pi seconds. Part (a) of this figure shows the case that the
arrival window has overlap with a 0-1-interval, which implies
that the 0-1-interval is in fact a 1-interval (Therefore, the
inference (originally N or N + 1) becomes N + 1). Part (b)
of this figure shows the case that the arrival window does not
have overlap with a 0-1-interval, which implies that the 0-1-
interval is in fact a 0-interval. Therefore, N + 1 is removed
from the inference, which leaves N as the only possible value.

Algorithm 1 shows the process iterating over every busy
interval to validate Nk(τi) values. By removing Nk(τi) values
that do not match with inferred arrival windows in a busy
interval, the number of possible task combinations for that
interval can be reduced, sometimes to a unique combination.
This reduced set of possible Nk(τi) values is then used
to update the arrival windows. This process of removing
mismatched Nk(τi) inferences and updating arrival windows
repeats until the values stabilize as illustrated in Figure 7.

Example 4. Consider busy interval ω4 which has two possible
inferences (N4 = {1, 0, 1} and N4 = {1, 1, 0}) in Example 2,
we apply arrival windows got from previous step to remove

(a) Arrival windows of τ3 (b) Arrival windows of τ2

Figure 13: Example 3, compute possible arrival windows by
getting intersections from 1-interval and 0-1-interval.

Figure 14: Validation of Nk(τi) values with applying arrival
window A(τi) to the busy interval ωk.

Algorithm 1 Removing Mismatched Nk Inferences

1: while any Nk inference is updated do
2: compute A(τi) for all tasks
3: for each busy interval ωk do
4: for each arrival window A(τi) do
5: remove this Nk if Nk(τi) is mismatched
6: end for
7: end for
8: end while

the mismatched inference.

Here we use arrival window of τ2 to demonstrate the
process since it has two possible N4(τ2) values (0 or 1) and an
unambiguous arrival window A(τ2) = [0, 0] which is perfect
for validating N4 combinations. By applying A(τ2) to ω4 as
shown in Figure 15, we confirm that τ2 should have arrived
one time, which validates the inference of N4 = {1, 1, 0} and
invalidates N4 = {1, 0, 1}.

Once the ambiguity in ω4 is removed, the only 0-1-interval
for inferring A(τ3) in Example 3 can be identified as 0-interval
based on the correct inference N4 = {1, 1, 0}. This leaves the
intersection on the left in Figure 13 as the only correct arrival
window for τ3.
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Figure 15: Example 4, apply arrival window A(τ2) to busy
interval ω4 we can say τ4 has arrived exactly one time, which
removes the original ambiguity in ω4 shown in Example 2

E. Arrival Windows to Arrival Times

At the end of the refinement loop hitherto discussed, some
tasks end up with an arrival window as small as one point
giving their exact arrival time. However, arrival windows for
other tasks may still have a broader range range and cannot be
narrowed further. In order to process the scheduling simulator
that will be used in next step, an exact point for each arrival is
needed. We consider the beginning point of the arrival window
as the exact arrival time for such tasks. The reasons for this
choice are first, to make sure that the job instances in a busy
interval do not become disconnected, and second, since this
choice indicates the earliest possible arrival time of a job,
attacks launched by the colluding task using this arrival time
will never miss the job.

F. Reconstruction of Schedules

Once the arrival time of every job in each busy interval
is obtained, reconstruction of the task schedule is close to
completion. By this point, there is sufficient and independent
information for every busy interval making it possible to
selectively rebuild the schedule of any busy interval using our
compact scheduling translator (the implementation of such
translator is presented in Appendix G). For a selected busy
interval ωk, the compact scheduling translator takes arrival
times Ak and Γ as input to perform scheduling algorithm. Ak

here can be interpreted as a prearranged arrival queue where
the scheduling translator only processes the given jobs. The
output of this process is the set of start times Sk for all jobs
within the busy interval ωk.

Figure 16 presents an example of schedule reconstruction
of busy interval ωk in the presence of τi and τj where
Nk(τi) = 3, Nk(τj) = 2 and pri(τi) < pri(τj). Part (a) shows
the arrival times of each job (shown using down arrows) that
are obtained from arrival windows and (b) presents the start
times (shown using up arrows) outputted from the scheduling
translator. If necessary, by repeating this process over all busy
intervals, the whole schedule can be reconstructed.

IV. TRIGGERING COLLABORATIVE ATTACKS

To demonstrate the the feasibility and utility of the pro-
posed schedule reconstruction scheme on a realistic platform,
we implemented a targeted cache timing attack on Zedboard
that leverages provided schedule information. The cache timing
attack is implemented in a collaborative compromised task
which behaves normally until it receives a signal from the
idle task after the schedule is reconstructed.

A cache timing attack utilizes time difference between
cache-hit and cache-miss when accessing data via processor’s

Figure 16: Translation of start times Sk from arrival times Ak

in busy interval ωk where pri(τi) < pri(τj).

cache to estimate the amount of attacker’s data existing in the
cache. By knowing how much data is evicted from the cache,
an attacker can estimate the cache usage of the victim task and
potentially infer its memory usage as well.

In this demonstration, we target a camera task which com-
presses pictures taken by a camera module. It runs under 30ms
in period with 10ms worst case execution time. The camera
task initiates with no-operation mode and starts capturing
photos with low resolution by default. It switches to high
resolution mode when details need to be captured. The switch
between these modes results in a shift in memory usage by
the camera task. The goal of our attack from the malicious
task, which runs under 10ms in period and 2ms in worst
execution time with priority higher than the camera task, is
to detect the switch between the camera modes by monitoring
the tasks’ cache usage. Such an attack for example could help
the attacker identify locations of special interest for an UAV
during a reconnaissance mission.

To launch a cache timing attack, the malicious task must
locate the start time of the victim task, which is done by
referring to the reconstructed schedules. The idle task then
issues a signal to malicious task prior to an execution of the
victim task, and the malicious task launches the attack by
using Algorithm 2. In traditional enterprise computers or cloud
computing settings an adversary may be able to periodically
launch the attack till he finds the victim task executing, but
in a real-time systems such a strategy might result in missed
deadlines for legitimate tasks leading to scrutiny of the system
and increased risk of detection for the attacker.

Figure 17 presents the inference of the cache usage amount
and the memory usage patterns. The results suggest that the
transitioning points of the memory usage at sampling count
15, 70 and 90 can be easily observed from the inferred cache
usage pattern. Note that, in this demonstration, no other tasks
preempted the victim task. Undoubtedly, presence of another
task that can preempt the victim would cause some distortion
on the cache usage amount. Nevertheless, the pattern will be
recognizable in this case since the camera task consumes the
most memory, which makes the usage from other tasks subtle
and negligible. Furthermore, knowing the schedule could help
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Algorithm 2 Cache Timing Attack

1: {Thit: cache access time with all cache-hit }
2: {Tmiss: cache access time with all cache-miss }
3: {Tvictim: cache access time after victim task }
4: {time(CacheRead): measure access time to all cache

lines}
5:
6: Clear all cache lines
7: Tmiss ← time(CacheRead)
8: Thit ← time(CacheRead)
9: while victim task has not ended do

10: NOP
11: end while
12: Tvictim ← time(CacheRead)
13: return (Tvictim − Thit)/(Tmiss − Thit)

Figure 17: Cache timing attack over a camera task that shows
how the transition of the memory usage (green line) can be
recovered by the observation of the cache usage (blue line).

the attacker account for noise from other tasks.

V. IMPLEMENTATION AND EVALUATION

The ScheduLeak algorithm has been implemented on a
hardware board running a real-time operating system as well as
in a simulation platform. The implementation on the hardware
board demonstrates the feasibility of carrying out such attacks
on realistic real-time systems while the simulator is used
to explore a larger design space for the system parameters.
We first provide details of the implementation and simulation
engines and then present an evaluation for them.

A. Implementation Environment

We implemented the ScheduLeak algorithm on an ARM-
based development board, Zedboard [2]. This embedded
board includes 512MB of DDR3 memory and 256Mb Flash
and is equipped with a Xilinx Zynq-7000 XC7Z020 All Pro-
grammable SoC. The XC7Z020 SoC includes a dual-core ARM
Cortex-A9 processor and each core has a private 32KB L1
cache and shares a 512KB L2 cache. The cores also share
a Xilinx programmable logic FPGA. The processor runs at
666.67MHz and drives a shared 64-bit Global Timer (GT) that
is clocked at ≈ 333.3MHz. Our real-time tasks execute on one
of the processor cores and do not use the FPGA functions. We
tested our implementation with a variety of different task sets,
starting from the UAV model (Figure 1 and Section II) to many
synthetic task sets.

The real-time task sets ran on a real-time operating system,
FreeRTOS, which is a lightweight and open source real-time
kernel [1]. It is powered by a priority-based preemptive real-
time scheduler that allows higher priority tasks to preempt
lower priority tasks. Every task in FreeRTOS is in one of the
four states: running, ready, suspended and blocked. The task
currently assigned to the CPU is in the running state while
one that is in the ready queue but blocked because of a higher
priority task is in the ready state. Tasks are in the suspended
state when it completes execution of one job or is preempted
by a higher priority job.

To build the “ground truth”, i.e., to test the correctness of
the results obtained from reconstructing the schedules using
the ScheduLeak algorithm, the FreeRTOS kernel has been
modified to record time stamps for context switches. Also the
malicious functions that execute on the idle task delivers the
inference of start times to an experiment data handler. This
module outputs the log in conjunction with the context switch
timestamps through the UART console – these outputs form
the ground truth in our system.

The Zedboard implementation is used to demonstrate that
the ScheduLeak algorithm can (a) execute with good results on
a real platform and (b) tolerate jitters in a realistic environment.
The simulation tool (described later) is used to evaluate the
algorithm on a wider range of task sets and to compare results
with those from the Zedboard.

B. Launching the Attack

FreeRTOS uses the idle task to handle slack times when no
task is executing or waiting in the ready queue8. The idle task
is created by FreeRTOS in the vTaskStartScheduler()
function at system startup by calling xTaskCreate() –
this is the same function used to create user tasks. The main
function of the idle task is to consume slack time by looping
infinitely. Like other tasks in the system, the idle task has to
yield time to the scheduler when required.

We developed a feasible scenario to hijack the idle task. Re-
call from Section II that large and complex real-time systems
are often developed using a vendor-based model and some of
the components may not be trusted (or fully secure). Hence,
malicious code could enter and be placed (or have already
been present) at a certain memory location. The attacker, with
prior knowledge of this location could leverage the fact that
FreeRTOS has a flat memory model (and no virtual memory
or other protection mechanisms such as address-space layout
randomization) and execute this code. In fact, we tested out
a buffer overflow attack on a strcpy() implementation [15]
where a specially crafted command was inserted via a remote
terminal. Successful execution of the malicious code resulted
in a hijack of the idle task.

FreeRTOS also includes an idle hook function
that allows designers to execute their own functions
within the idle task if needed. The idle hook function,
vApplicationIdleHook(), is called once every cycle
in the idle task. However, in practice, it is uncommon for

8This is typicaly behavior in real-time systems where stringent timing and
safety constraints prevent systems from being suspended when there is nothing
to execute. In fact, many such systems use an Idle task to loop and wait for
the next task.
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an application to use the idle task in this way. This gives
attackers an opportunity to hijack the idle hook without
downgrading the original system functionality, thus avoiding
detection. Instead of directly injecting malicious code into
the idle hook function we use the jump command. Since
FreeRTOS does not support virtual memory we can locate
the physical address of the idle hook function by declaring
“extern void vApplicationIdleHook(void);”
and get the address with &vApplicationIdleHook. Then
we replace the jump command with a new one pointing to
our malicious function.

C. Capturing Busy Intervals

The Global Timer (GT) that is accessible to user tasks in
FreeRTOS is used as a time reference to capture busy intervals.
Remember that it is clocked at half the processor frequency,
i.e., 667MHz/2 = 333.5MHz. Hence, the resolution of the
Global Timer can be computed by 1/333.5MHz ≈ 3ns. To
capture a busy interval, the idle task uses Global Timer as
a reference to inspect whether or not the idle task has been
preempted. It reads the Global Timer in a loop and compares it
with the time stored from last time it was preempted. If nothing
preempts the idle task during a loop, then the difference for
times between consecutive loops remains below one unit of
idle task execution time (i.e., 447ns as identified in the on-
board results part of the Evaluation section). In contrast, if the
difference is greater than expected, then a preemption must
have occurred.

The algorithm for capturing a busy interval is presented in
Algorithm 3. The idle task repeats the same process until it
collects all busy interval instances for at least one hyper-period.
After that, the program moves to the busy interval analysis
stage. Section V presents a discussion on the granularity of
the idle task measurements.

Algorithm 3 Capturing A Busy Interval

1: {GT : global timer}
2: {t0 : current time stamp}
3: {t−1 : last time stamp}
4:
5: t−1 ← GT
6: duration← 0
7: while duration ≤ idle task execution time unit do
8: t0 ← GT
9: duration← (t0 − t−1)

10: t−1 ← t0
11: end while
12: return t0, duration

D. Experimental Setup

We also evaluated the ScheduLeak approach using an
internally developed scheduling simulation tool. This tool is
used to test the scalability of the algorithm and also to test
with a more diverse set of real-time task combinations.

We apply the analysis algorithm (from Section III) to
various random synthetic task sets and checking whether the
inference of start times matches the corresponding ground
truth. The task sets are grouped by utilization from [0.01 +

0.1 · i, 0.1 + 0.1 · i] where 0 ≤ i ≤ 9. Each utilization group
contains 6 subgroups that have a fixed number of tasks from 10
to 15. Each subgroup contains 1000 task sets. In other words,
6000 task sets are generated in each utilization group resulting
in 60000 task sets to test for one condition.

In order to obtain uniform hyper-periods (for ease of
comparison), task periods are selected from combinations of
numbers in [2, 3, 5, 7, 11, 13] – this results in a hyper-period
of 30030 for all task sets. Note that the reason for choosing
prime numbers is because we want to generate non-harmonic
tasks9 (we will discuss this later on). Task sets with the same
period are excluded from the test to avoid duplicate effort. The
priorities of tasks are assigned by the rate-monotonic algorithm
[17], i.e., a task with a shorter period is assigned a higher
priority. We only pick those task sets (to form the 60, 000)
that are schedulable by fixed-priority scheduling algorithms.

Figure 18 shows a snapshot of the simulation tool used in
this paper. For each task set, we obtain its schedule using a
scheduling simulator. The schedule is simulated for one hyper-
period since schedules repeat every hyper-period thereafter.
The start time for each job is recorded to form the “ground
truth” for comparison purposes. The schedule is then converted
to blocks of busy intervals (with no information on arrival
times, start times, etc. ). These chunks of busy intervals
(essentially black boxes) are fed as input to the ScheduLeak
algorithm for reconstruction. The algorithm outputs a series of
start times that are then compared with the ground truth (based
on metrics defined in Section V-E). Jitters are not considered
in this simulation experiment since we want to inspect the
potential errors (if any) introduced by the algorithm itself. An
evaluation that includes jitter is discussed in Section V-G.

E. Performance Metrics

For a given task set containing {τ1, · · · , τn}, let S be
the set of all schedules. Note that |S| ≤

∏n
i=1 pi. For an

observation O, we define SO ⊂ S as the set of all schedules
that gives observation O. Note that all the SO’s partition S.

Definition 1. For an observation O, we call elements of SO
as “indistinguishable schedules” w.r.t. observation O. Hence,
two schedules are indistinguishable if they both result in the
same observation.

Note that since we only see observation O, no task analysis
algorithm can distinguish the elements of SO. Therefore,
we define the performance as follows: In our approach we
obtained arrival windows {A(τ1), · · · , A(τn)} for tasks. Let
us define A as the set of all schedules created by our arrival
windows. We define the performance of the algorithm as
η = 1− |A4SO||A∪SO| , where4 is the symmetric difference operator
defined as A4B = (A∩Bc)∪ (B ∩Ac). Note that η will be
between 0 and 1 where 1 indicates the algorithm has narrowed
down S to SO for the given observation O and has optimum
performance. While the ultimate goal of the algorithm is for η
to be as close 1 as possible, this metric is not easy to calculate
in practice. Hence, we define an alternative metric, “Inference
Precision Ratio” to evaluate the performance of the algorithm.

9A task set is harmonic if periods of tasks are pairwise divisible.
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Figure 18: The simulation tool that integrates a fixed-priority scheduling simulator and the analysis algorithm is used to process
the simulation experiments conducted in this paper for the evaluation.

Inference Precision Ratio: One way to evaluate the per-
formance of an algorithm is to compare the schedules from
the output with that from the ground truth. Let the start
times for task τi be {S∗(τi)1, · · · , S∗(τi)s} and the start
times estimated by our algorithm be {S(τi)1, · · · , S(τi)s}.
Let E(τi)j = S∗(τi)j − S(τi)j be the error in estimating
the start time of the jth appearance of task τi. Therefore, for
task τi we have the errors E(τi) = {E(τi)1, · · · , E(τi)s}.
We define the standard deviation of these errors from zero as,
SDi =

√
1
s

∑s
j=1(E(τi)j)2. We now define the efficiency of

the estimation of the start time of task τi as (1− SDi

pi
) where

pi is the period of task τi. This value is a number in [0, 1]
where 1 indicates an exact estimation of the start times10. For
a task set containing n tasks, we define the overall estimation
efficiency (precision ratio) of the algorithm as the geometric
mean of the estimation efficiency of tasks in the set, as follows:

η′ = (

n∏
i=1

(1− SDi

pi
))

1
n (4)

F. Simulation-based Results

We first evaluate the precision ratio of our algorithm using
the Equation 4. To examine the factors affecting performance
of the algorithm we test it using tasks sets that are generated
under four different conditions (Table II): (A) without initial
offset; (B) without initial offset and harmonic periods; (C) with
random initial offset and finally (D) with random initial offset
but without harmonic periods. Figure 19 shows the precision
ratio of the algorithm for the task sets in each condition while
Table III shows the geometric mean of the precision ratios for
each utilization group in each test condition.

The results suggest that the algorithm performs well when
all tasks are synchronized and have no initial offset (i.e.,
Condition.A and Condition.B as shown in Figure 19a and 19b)
which yields the overall precision ratio of 1.0. This is due to
the fact that during the process of converting an arrival window
to its corresponding arrival time, we always pick the start point
of the window as the arrival time for simulating the schedules.
This matches the condition that all tasks start at the same time.
Hence, task sets with random initial offsets (Condition.C) are
expected to produce some uncertainties.

10Hence we know exactly when the task starts so side-channel attacks
launched against it (like Section V-B) have a much higher chance of success.

Allow Harmonic Tasks w/o Harmonic Tasks
w/o Initial Offset Condition.A Condition.B
w/ Initial Offset Condition.C Condition.D

Table II: Task sets generated under four different conditions
are tested. Each condition tested with 60000 task sets, 10
utilization groups, 6 subgroups. Number of tasks per task set
chosen from 10 to 15 (i.e., 1000 task sets per subgroup.

Results from Table III and Figure 19(c) show that the
precision is reduced, albeit a little, for Condition.C. The mean
of the precision ratio drops when the utilization is above
0.5, i.e., when the system is heavily loaded as expected.
Nevertheless, the overall precision is still reasonably high.
See the inset in Figure 19c with Y-axis adjusted from 0.95 to
1.0 that provides more details (note: a heavier color indicates
higher occurrence). The inset clearly shows that a majority of
task sets have a precision close to 1.0 (nearly 93.37% of task
sets have precision ratio of 1.0 even for Condition.C).

We analyze task sets that result in precision values below
1.0 to find factors contributing to the uncertainty – the results
lead us to the presence of harmonic tasks11. Remember that
in our random task set generator we only ensure that each
task period is distinct. Hence, it is possible to get a task set
with harmonic tasks. Those task sets are either completely
harmonic or partially harmonic (only a couple of them are
harmonic but the rest are not). The problem is that harmonic
tasks often appear together –this may produce bigger busy
intervals. In the worst case, a task may always be scheduled
together with other tasks throughout the schedule – this makes
it harder to tell them apart. To test this hypothesis, the task
set generator was used to produce non-harmonic task sets
only for Condition.A and Condition.C – they transform into
Condition.B and Condition.D respectively.

Results are shown in Figure 19(b) and 19(c). Note that
Condition.B is used to check whether we get results consistent
with Condition.A, and Condition.D is used to compare with
Condition.C to evaluate the influence of harmonic tasks. As
seen in the figure, results from B and A are identical, sug-
gesting that the algorithm works properly regardless of the
presence of harmonic tasks. The precision ratio rises instantly
for D when harmonic tasks are removed. Note that the drop
in precision is very small and for most task sets we are very
close to 1.

11Tasks with periods that are integral multiples of each other.
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(a) Condition.A: without initial offset (b) Condition.B: without initial offset and harmonic tasks

(c) Condition.C: with random initial offset (d) Condition.D: with random initial offset but without harmonic tasks

Figure 19: Experiment results of four test conditions. It shows that the analysis algorithm is only downgraded in Condition.C
and Condition.D (both are with initial offset) with acceptable precision ratio roughly above 0.95. Note that 60000 task sets are
tested in each condition.

Utilization Condition.A Condition.B Condition.C Condition.D
[0.0,0.1] 1.0 1.0 1.0 1.0
[0.1,0.2] 1.0 1.0 1.0 1.0
[0.2,0.3] 1.0 1.0 1.0 1.0
[0.3,0.4] 1.0 1.0 1.0 1.0
[0.4,0.5] 1.0 1.0 1.0 1.0
[0.5,0.6] 1.0 1.0 0.99999 1.0
[0.6,0.7] 1.0 1.0 0.99998 1.0
[0.7,0.8] 1.0 1.0 0.99994 1.0
[0.8,0.9] 1.0 1.0 0.99977 1.0
[0.9,1.0] 1.0 1.0 0.99829 0.99999

Table III: Geometric mean of precision ratio for each uti-
lization group in each condition. Conditions are referred to
Table II, which represents (A) w/o initial offset. (B) w/o initial
offset and harmonic periods. (C) w/ random initial offset. (D)
w/ random initial offset but w/o harmonic periods.

Condition.A Condition.B Condition.C Condition.D
Max 1.0 1.0 1.0 1.0

Geometric Mean 1.0 1.0 0.99979 1.0
Min 1.0 1.0 0.9504 0.9873

Table IV: Maximum, minimum and geometric mean values of
the precision ratio in each test condition. The result indicates
that even for the worst case (Condition.C: with initial offset)
it maintains a high accuracy level as 0.9504 in precision ratio.

Another important factor that affects the precision of our
analysis is the utilization of the real-time task sets. Figure 20
shows the precision ratio data for utilization groups [0.6,
0.7] and [0.9, 1.0]12. Higher utilization indicate (i) smaller
idle times and (ii) larger busy intervals – both of which
are detrimental to our analyses. Hence, more ambiguous
conditions show up while trying to estimate the number of

12[0.6, 0.7] is the average case while [0.9, 1.0] is the worst case.

arrivals in a busy interval. Having said that, even for the
worst-case scenario (Table IV) the precision reaches 0.9504
– which is really high and can still be used to launch targeted
attacks. Figure 23 in the Appendix presents similar data for
the remaining utilization groups.

G. Zedboard-based Results

We first examine the cost for execution of the idle task
and the impact on the ability to capture busy intervals. As
mentioned earlier, the idle task uses a loop to read time
values from the Global Timer. The shortest busy interval
that can be measured depends on the cost for reading the
timer and executing the idle task instructions. We measure
the cost of each idle loop to be 447ns, on average, in the
absence of preemption. This is really small when compared
to the execution times for the real-time tasks (typically more
than 10µs). The global timer counts 447ns/3ns ≈ 149 (See
Section V-C) times during each idle loop. On the other hand,
one of the smallest busy intervals (say, just one task with
execution time 10µs) will result in the counter incrementing
10µs/3ns ≈ 3333. Hence, it is extremely unlikely that the
idle task will miss any busy intervals.

The costs are different when a busy interval is captured
since the timing now involves a pair of context switches (idle
task in and out). From our experiments the cost now becomes
18.48µs on average. Hence, this adds to the length of any busy
interval but the costs are bounded since each measurement only
includes two idle task loops (Section V-C). We can confidently
remove these costs from every busy interval. This leaves only
jitter as a source of uncertainty in our measurements. From
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(a) Utilization Group [0.6, 0.7] in Condition.C (b) Utilization Group [0.9, 1,0] in Condition.C

Figure 20: Detailed experiment data of Condition.C. The results suggest that higher utilization leads to lower precision ratio.

our experiments, the removal of the idle task costs results in
a 0.28µs error, on average, for each busy interval. If the delta
due to this error is greater than the execution time for the
shortest task then it introduces uncertainty into our analysis
since we cannot tell it apart from a legitimate task. In practice,
this depends on the actual application task sets. For the UAV
model (presented earlier on), the shortest task (the network
manager) has an execution time of 30µs – orders of magnitude
higher than the error/delta. Hence, the errors in measuring the
busy intervals do not really affect our analyses.

We now evaluate the precision ratio of the inference on
the Zedboard. To tolerate jitters, the equations for estimating
Nk(τi) values, the number of arrivals for a task in a busy inter-
val, are replaced by the equations introduced in Appendix C.
The remainder of the procedure remains unchanged. The calcu-
lation of the precision ratio uses Equation 4. The result shows
that, for those task sets that have a precision ratio of 1.0 in the
simulations, the average value on Zedboard is around 0.9977.
The jitters naturally induced by hardware result in uncertainties
that lowers the precision ratio. Nonetheless, the result shows
that the algorithm can work properly to reconstruct schedules
with high accuracy on a realistic platform.

We also propose a modification of part (i) in Theorem 2 to
improve the performance of building arrival windows (Sec-
tion III-C). This change will result in narrower estimated
arrival windows and hence improve the performance. We omit
the evaluation of this minor change here. The improved version
of Theorem 2 is provided as Theorem 4 in the Appendix.

H. Overhead Evaluation

It is important to note that the analysis of busy intervals
need not necessarily be performed online. For some attack
scenarios, the data can be analyzed offline. Hence, the analysis
will not be limited by the performance of the hardware. In this
section though, we focus on the overheads for carrying out the
analysis on the actual board to demonstrate the feasibility of
applying the algorithm in an online fashion.

The estimate of Nk(τi) uses Equation (1) to find the
matching combinations for a busy interval. This has order of
2n time complexity. However, the number of tasks is often
fixed for a task set, thus 2n is bounded in a given real-
time system. Table V shows time consumption for completing
the estimate for one busy interval with 10 to 15 tasks per
task set. The results suggest that while checking for valid
combinations of Nk(τi) is a time-consuming operation, this
data only demonstrates the worst case when every task’s
Nk(τi) is either N or N + 1. The real execution time depends

on the length of the busy interval and the corresponding Nk(τi)
values for each task.

Number Possible Total Time One Combo
of Tasks Combinations Consumption Average Time

10 1024 58.94ms 57.55us
11 2048 129.72ms 63.33us
12 4096 283.43ms 69.20us
13 8192 642.12ms 78.38us
14 16384 1444.40ms 88.15us
15 32768 3260.45ms 99.50us

Table V: Execution time measurement for computing all pos-
sible Nk values for one busy interval.

The computation of calculating arrival windows depends
on the number of instances of each task in a hyper-period.
From our experiments, it takes 2.073ms to get arrival windows
for the 10-task task set mentioned above where each task
executes for around 10.5µs on average. For the elimination
of mismatched Nk(τi) values it takes arrival windows of n
tasks to inspect each estimate in every busy interval. This has
a complexity in the order of n. In the same experiment as
above, it takes 17.4us to iterate through 14 busy intervals with
10 arrival windows from the correspondent 10 tasks. Finally,
for a task set with 10 tasks that have 14 busy intervals on our
Zedboard, it takes 828.05ms to complete the total analysis.

VI. UNCERTAINTY FACED BY ADVERSARIES

In the evaluation, we test the algorithm with task sets
having three variables: (i) initial offset, (ii) with or without
harmonic tasks and (iii) CPU utilization. From the results,
we can conclude that the factors influencing the precision of
our algorithm are: (a) having harmonic tasks (either partially
or entirely) in the task set reduces the precision of the
inference; (b) having random initial offset adds uncertainty of
the schedule; (c) higher utilization means larger duration and
more tasks involved in one individual busy interval, which
increases the difficulty of the inference.

The schedule reconstruction mechanism in ScheduLeak
leverages the limited uncertainty in the repeating schedules
generated by a fixed-priority scheduler. Defenders may ran-
domize the schedules so that there is no guarantee that the next
hyper-period will show the exact same order (and timing) of
execution for the tasks. For instance, by picking a random task
instead of the one with the highest-priority at each scheduling
point, subject to the deadline constraints [29]. Figure 21 shows
a part of the schedule for the task set in Example 5 generated
by the randomization algorithm. It shows tasks being shuffled
within each busy interval.

To counter such randomization methods, let the arrival time
of one instance of task τi be denoted by A(τi) and we want
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to predict its corresponding start time S(τi). If at any instance
in time there are many other tasks waiting to be executed,
then by the properties of such randomization scheduling, S(τi)
could be at any time in the interval [A(τi), A(τi) + pi − ci].
Therefore, even if A(τi) is known, no algorithm can predict
S(τi) accurately. On the other hand, if we find a time in the
busy interval such that τi is the only buffered task and no other
task is being executed, then by the work conserving property
of the scheduler, τi has to be executed and we choose this
point as the latest time for S(τi). We can use the arrival
window estimations (note: arrival times do not depend on
the scheduling policy; so they are still of use in the face of
randomization) in our algorithm to find such time instances.

We focus on each busy interval and look for the following
condition: Suppose for i ∈ {1, ..., j} the intervals A(τi) =
[ai, bi] with ai ≤ ai+1, for 1 ≤ i ≤ j − 1, are the arrival
windows estimated by our algorithm in a given busy interval.
If there exists point xi ∈ A(τi) such that xi > a +

∑
k<i ck

(a is assumed to be the start point of the busy interval) and
xi < ai+1, then we change bi to xi, and hence we can make the
arrival window narrower. Due to the work conserving property
of the scheduler we understand that τi should have started to
be executed by xi. Hence, if we choose the first point of the
arrival window as the starting time, the error in estimating the
start time will be in the interval [0, xi − ai]. For instance, for
the special case that τi is the only task whose arrival window
starts at the beginning of the busy interval (i.e., a = ai), we
can find the exact starting time of τi. This trick could be also
used, when randomization is absent, to improve the accuracy
of the estimation of arrival windows. After making arrival
window A(τi) narrower by changing bi to xi, we can take its
intersection with the arrival window in other segments. Hence,
all of them become narrower. This step could be implemented
by having a list of ready to execute tasks. If at some point there
is only one task in this list and no task is being executed, due
to the work conserving property of the scheduler, that task
should be executed. So our ScheduLeak mechanism can even
deal with some randomization-based defenses.

VII. RELATED WORK

Recent work on real-time systems security has demon-
strated the feasibility of information leakage through task
scheduiling. Son et al. [23] highlighted the susceptibility of
rate-monotonic schedulers to covert timing channel attacks

(a) No randomization

(b) Randomization

Figure 21: Partial Schedules with and without the randomiza-
tion for 10 hyper-periods.

due to timing constraints. Völp et al. [26] presented mod-
ifications to fixed-priority scheduling, altering thread blocks
that potentially leak information with the idle thread to avoid
the exploitation of timing channels. Völp et al. [25] examined
shared-resource covert channels in real-time schedules and
addressed it by using transformed resource locking protocols.

Kadloor et al. [13] introduces a methodology for quanti-
fying side-channel leakage for first-come-first-serve and time-
division-multiple-access schedulers. Gong and Kiyavash [10]
analyzed deterministic work-conserving schedulers, for which
they discovered a lower bound for the total information leak-
age. The collaborative version of this problem, in which two
users form a covert timing channel in a shared scheduler to
steal private information from a secure system is studied by
Ghassami et al. [9]. While in the above works the attacker uses
traffic analysis to obtain information about the user activities,
our work is primarily concerned with the analysis of individual
tasks by reconstructing the original task schedule.

Mohan et al. [21] considered the problem of direct infor-
mation leakage between real-time tasks through architectural
resources such as shared cache. They introduced a modified
fixed-priority scheduling algorithm that integrates security lev-
els into scheduling decisions. Pellizzoni et al. [22] extended the
above scheme to a more general task model and also proposed
an optimal priority assignment method that determines the task
preemptibility while meeting all the timing requirements.

Cache-based side-channels contain the highest bandwidth
among all side-channels, making them invaluable for infor-
mation leakage [11]. The growth of cloud computing has
caused such attacks face increased scrutiny [5], [33]. Wang and
Lee [27] who presented a hardened cache model to mitigate
side-channels by adopting partitioning and memory-to-cache
mapping randomization techniques. However, most existing
methods aimed at reducing information leakage through cache-
based side-channels have not considered real-time systems.
While other methods of side-channel attacks exist such as
power, electromagnetic and frequency analysis [24] [4], they
are not the focus of this paper. Jiang et al. [12] developed
a framework for examining the effectiveness of scheduling
policies in preventing differential power analysis attacks.

VIII. CONCLUSION

The methods presented here will improve the design of
future real-time systems. Designers will have an increased
awareness of attack mechanisms that leak crucial information
in such systems. Hence, they can develop methods that prevent
(or at least reduce the effectiveness of) such attacks.

We intend to further refine the algorithms (and analyses)
presented here and also develop solutions to deter such attacks.
We believe that the area of security for real-time systems will
require the development of a large body of work, along mul-
tiple directions, to ensure the overall safety of such systems.
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APPENDIX

A. Proof of Theorem 1

Consider ti0, ti1, ti2, · · · as the arrival times of task τi and
define S = {ti0, ti1, ti2, · · · }. We use the following two lemmas
to prove Theorem 1:

Lemma 1. A busy interval contains the kth task of τi if
and only if it contains tik (either as an interior point or as
a boundary point).

Proof: The kth task of τi will be released at time tik if
there are no tasks with higher priority running at that time, or,
will be released immediately after the end of the tasks with
higher priority. Hence, in both cases, the system is busy from
time tik to at least the finishing time of the kth task of type i.
Therefore, a busy interval which contains tik, contains the kth
task of τi, and a busy interval that contains the kth task of τi,
should have started at tik or at a time before tik. (Note that the
end point of a busy interval cannot belong to S).

Lemma 2. If C(wk) satisfies

Npi < C(wk) < (N + 1)pi, N = 0, 1, 2, ... (5)

then task τi can only has arrived N or N + 1 times during the
busy interval wk.

Proof: If Npi < C(wk) < (N + 1)pi, then wk contains
N or N + 1 points of S. Therefore, by Lemma 1, task τi can
only arrive N or N + 1 times during the busy interval wk.

Proof of Theorem 1: (i) If Npi − ci ≤ C(wk) < Npi,
then the busy interval cannot contain N − 1 points from S,
otherwise, a task of type i should have finished in a time
interval less that ci seconds. Therefore, it exactly contains N
points from S.
If Npi ≤ C(wk) < Npi+ci, the start point of the busy interval
cannot belong to S (otherwise, the length of the busy interval
should be at least Npi + ci), therefore, it exactly contains N
points from S.
Therefore, by Lemma 1, in both cases, task τi can only has
arrived N times during the busy interval.
(ii) This part follows from Lemma 2 immediately.

B. Uniqueness of the Combination

In this appendix we address the problem of determining
under what conditions the task combination found for a busy
interval is unique. The key idea is the following:

If we can find two distinct sets of tasks, I+ and I− such
that the sum of the execution times in these two sets are equal,
that is, ∑

i∈I+

ci =
∑
i∈I−

ci, (6)

then, ambiguity (non-unique task combination) is possible,
and it will happen for a busy interval wk of length C(wk),
satisfying,

C(wk) =
∑
i∈I+

mici +
∑
i∈I−

(mi + 1)ci +
∑

i/∈I+∪I−

nici (7)

such that,

mipi+ci ≤ C(wk) < (mi+1)pi−ci, ∀i ∈ I+∪I− (8)

Note that (8) implies that for i ∈ I+ ∪ I−, Nk(τi) = mi or
mi + 1.
The reason for non-uniqueness of task combination is as
follows: ∑

i∈I+

mici +
∑
i∈I−

(mi + 1)ci +
∑

i/∈I+∪I−

nici

=
∑
i∈I+

mici +
∑
i∈I−

mici +
∑
i∈I−

ci +
∑

i/∈I+∪I−

nici

=
∑
i∈I+

mici +
∑
i∈I−

mici +
∑
i∈I+

ci +
∑

i/∈I+∪I−

nici

=
∑
i∈I+

(mi + 1)ci +
∑
i∈I−

mici +
∑

i/∈I+∪I−

nici

(9)

Therefore, more than one task combinations are possible for
the busy interval of length C(wk).

C. Values with Uncertainty

Let ti0, ti1, ti2, ... be the arrival times of τi and define S =
{ti0, ti1, ti2, · · · }. If there is no error in the system we expect S
to be {a, a+ pi, a+ 2pi, · · · } for some constant offset a.
We consider the following scenario:

• The kth task of τi arrives at time a+kpi+δi,k, where
{δi,0, δi,1, δi,2, ...} is a sequence of i.i.d. real valued
random variables with |δi,k| < δi, k = 1, 2, ....

• The execution time of the kth task of type i is
ci + γi,k, where ci is a deterministic and fixed value
and {γi,0, γi,1, ...} is a sequence of i.i.d. real valued
random variables with |γi,k| < γi, k = 0, 1, ....

Figure 22 shows an example of the arrival of τi.

𝑐𝑖 + 𝛾𝑖,0 𝑐𝑖 + 𝛾𝑖,1 𝑐𝑖 + 𝛾𝑖,2 𝑐𝑖 + 𝛾𝑖,3 𝑐𝑖 + 𝛾𝑖,4 

𝑎 𝑎 + 𝑝𝑖  𝑎 + 2𝑝𝑖  𝑎 + 3𝑝𝑖  𝑎 + 4𝑝𝑖  𝑡0
𝑖  𝑡1

𝑖  𝑡2
𝑖  𝑡3

𝑖  𝑡4
𝑖  

Figure 22

The goal is to find the extension of Theorem 1 for the case
that we have uncertainty in the values of task parameters. To
this end, we first need the following Lemma:

Lemma 3. For δi � pi,
If 0 < C(wk) < 2δi, then task τi can only has arrived 0 or 1
times during the busy interval.
Furthermore, if C(wk) satisfies

Npi + 2δi < C(wk) < (N + 1)pi − 2δi, N ≥ 0 (10)

then task τi can only has arrived N or N + 1 times during the
busy interval wk.
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Proof: If 0 < C(wk) < 2δi, then the busy interval
contains 0 or 1 points of S. Therefore, Lemma 1 in Appendix
1 gives the desired result.
If Npi + 2δi < C(wk), then the busy interval contains more
than N − 1 points of S, and if C(wk) < (N + 1)pi − 2δi,
then the busy interval contains less than N + 2 points of S.
Therefore, by Lemma 1, task τi can only arrive N or N + 1
times during the busy interval.

The following theorem is the extension of Theorem 1 for
the case that we have uncertainty in the values of execution
times and task periods.

Theorem 3. For given values of C(wk), pi, ci, γi and δi, such
that γi, δi � ci,
(i) If C(wk) satisfies

(Npi−ci +2δi +γi)
+ ≤ C(wk) < Npi +ci−2δi−γi, (11)

then task i can only has arrived N times during the busy
interval.
(ii) If C(wk) satisfies

Npi+ci−2δi−γi ≤ C(wk) < (N+1)pi−ci+2δi+γi, (12)

then task i can only has arrived N or N + 1 times during the
busy interval.

Proof: (i) If the condition in part (i) holds, the busy
interval should exactly contain N points from S; otherwise,
either the packet corresponding to the first point or the one
corresponding to the last point should have been executed in
a time interval less than ci − γi, which is not possible.
Therefore, by Lemma 1, task τi should have arrived N times
during the busy interval.
(ii) This part follows from Lemma 3 immediately.

Corollary 1. Defining ĉi , ci − 2δi − γi, from Theorem 3,

(i) If C(wk) satisfies

(Npi − ĉi)+ ≤ C(wk) < Npi + ĉi, (13)

then task τi can only has arrived N times during the busy
interval.
(ii) If C(wk) satisfies

Npi + ĉi ≤ C(wk) < (N + 1)pi − ĉi, (14)

then task τi can only has arrived N or N + 1 times during
the busy interval.

Recall that Nk(τi) is the number of times that task τi has
arrived during the busy interval wk. Therefore, for this busy
interval, we have to find Nk(τi)’s such that:

|
∑
i

Nk(τi)ci − C(wk)| ≤
∑
i

(γi ·maxNk(τi)) (15)

where by the theorem above, for each value Nk(τi), at most
2 values are possible, which are distant by 1.

D. Proof of Theorem 2

We partition the busy interval as follows:

[a, b] = [a, a+ pi] ∪ [a+ pi, a+ 2pi] ∪ · · · ∪ [a+ jpi, b]

In the proof, we will use the fact that by the periodicity
assumption, task τi arrives every pi seconds. Therefore, if we
know that there is no arrival at time t, then, t± pi also cannot
be arrival times.
(i) If we know the exact value of Nk(τi), we exactly know
in how many of the intervals of the partition above, arrival
exists. There cannot be an arrival in [a + jpi − ci, a + jpi],
otherwise, there should be an arrival in the interval [a− ci, a]
and hence, the busy interval cannot start at a. Also, if we
know that there is an arrival in the last interval of the
partition, we can make the 1-intervals narrower. Note that there
cannot be an arrival in [b− ci, b], otherwise, the busy interval
cannot terminate at b. Therefore, there should be an arrival in
[a+(N−1)pi, b−ci]. Therefore, by the periodicity assumption
and by shifting [a+ (N − 1)pi, b− ci] by integer multiples of
pi to the left and taking its intersection with other intervals of
the partition, we will get the arrival windows. Therefore, we
have (i).
(ii) Using Theorem 1, if Nk(τi) = N or N + 1, then

Npi + ci ≤ C(wk) ≤ (N + 1)pi − ci.

Therefore, in the partition, j = N . We know there will be
arrivals in first N intervals of the partition, but, we cannot
say anything about the last interval of the partition. Therefore,
we mark the last one as a 0-1-interval, with the consideration
that similar to part (i), there cannot be an arrival in [b− ci, b].
This gives us the second expression. Also, for other intervals
of the partition, similar to part (i), there cannot be an arrival
in [a + jpi − ci, a + jpi], for j = 1, .., N . This gives us the
first expression.

E. Improvement of Theorem 2

The following theorem is the improved version of Theo-
rem 2:

Theorem 4. Considering a task τi and a busy interval ωk

that has start time a and end time equal to b.
The partitioning of the busy interval is done by using the
following equations:

(i) If τi has arrived exactly N times during wk:

If N =
⌈C(wk)

pi

⌉
, the following segments are 1-interval:

Ak(τi)j = [a+(j−1)pi, b− (N−j)pi−ci] 1 ≤ j ≤ N
(16)

Else, the following segments are 1-interval:

Ak(τi)j = [b− (N + 1− j)pi, a+ jpi − ci] 1 ≤ j ≤ N
(17)

(ii) If τi may have arrived either N or N+1 times during wk:
the following segments are 1-interval:

Ak(τi)j = [a+(j−1)pi, a+jpi−ci] 1 ≤ j ≤ N (18)
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and the following segments are 0-1-interval:

Ak(τi)j = [a+ (j − 1)pi, b− ci] j = N + 1 (19)

where Ak(τi)j is the jth arrival window for task τi in busy
interval ωk.
In both cases, the remainder of the busy interval is 0-interval.

Proof: (i) First we note that by Theorem 1, If Nk(τi) =
N , then

(N − 1)pi + ci ≤ C(wk) ≤ (N + 1)pi − ci.

We partition the busy interval as follows:

[a, b] = [a, a+ pi] ∪ [a+ pi, a+ 2pi] ∪ · · · ∪ [a+ jpi, b]

If (N − 1)pi + ci ≤ C(wk) ≤ Npi, or equivalently,
N = dC(wk)

pi
e, then j = N − 1 and there should be an

arrival in each interval of the partition above. Also, there
cannot be an arrival in [b− ci, b], otherwise, the busy interval
cannot terminate at b. Therefore, there should be an arrival in
[a+ (N − 1)pi, b− ci].
By the periodicity assumption, task τi arrives every pi
seconds, i.e., if we have an arrival at time t, then, t ± pi is
also arrival times. So, shifting [a + (N − 1)pi, b − ci] by
integer multiples of pi to the left and taking its intersection
with other intervals of the partition, we get (16).

If Npi ≤ C(wk) ≤ (N + 1)pi − ci, then j = N and there
should not be any arrivals in the last interval of the partition
above. Hence, because of the periodicity, the last arrival should
be in the interval [b− pi, a+Npi]. But, If there is an arrival
in interval [a + Npi − ci, a + Npi], then there should be an
arrival in the interval [a − ci, a]. Therefore, the busy interval
cannot start at a. This implies that the last arrival should be
in the interval [b− pi, a+Npi − ci].
Finally, because of the periodicity, by shifting [b − pi, a +
Npi − ci] by integer multiples of pi to the left and taking its
intersection with other intervals of the partition, we get (17).
(ii) Using theorem 1 again, if Nk(τi) = N or N + 1, then

Npi + ci ≤ C(wk) ≤ (N + 1)pi − ci.

Therefore, in the partition, j = N , and we cannot say anything
about the last interval of the partition. So, we mark it as a 0-
1-interval, with the consideration that similar to part (i), there
cannot be an arrival in [b − ci, b]. This gives as (19). Also,
there should be an arrival in all other intervals of the partition,
with the consideration that similar to part (i), there cannot be
an arrival in [a+ jpi− ci, a+ jpi], for j = 1, .., N . This gives
as (18).

F. Extra Example for Estimate of Nk

Example 5. Consider a busy interval ωk with duration
C(ωk) = 16 and a task set Γ = {τ1, τ2, τ3} as follows:

pi ci Nk(τi)

τ1 5 1 3 or 4
τ2 17 6 1
τ3 24 7 0 or 1

∗C(ωk) = 16

The above Nk(τi) values are estimated using the conditions
of Theorem 1 (Equations (2) and (3)). For τ1, Equation (3)
holds when Nk(τ1) = 3 while Equation (2) does not, hence
the value of Nk(τ1) could be either 3 or 4 implying that τ1
is likely to have arrived 3 or 4 times during the busy interval
ωk. Likewise, the estimation of Nk(τ3) is similar to Nk(τ1)
except that τ3 may have arrived 0 or 1 time. For τ2, Equation
(2) holds when Nk(τ2) = 1 and thus we can be sure that it
arrived only once during C(ωk). We can now use Equation (1)
to find the combinations of Nk(τi) that can lead to the given
busy interval duration C(ωk) as shown in the following table:

Nk(τ1) Nk(τ2) Nk(τ3) C(ωk)
3 1 0 9
3 1 1 16

√
matched

4 1 0 10
4 1 1 17

∗C(ωk) = 16

In this case, only the combination of Nk = {3, 1, 1} satisfies
Equation (1) for a busy interval length of C(ωk) = 16.

G. Compact Scheduling Translator

In order to reconstruct the schedule for a specified busy
interval, a compact scheduling translator is used to convert
arrival times of participating tasks to corresponding start times
- the instant when a task actually starts running.

Similar to a regular fixed-priority scheduler, it applies the
scheduling algorithm to organize the sequence and preemption
of each job execution. However, in contrast to a real scheduler,
it omits the real execution and does only the estimation of the
start times. The translator starts with the first arrival in the busy
interval and stops when there is nothing is to be scheduled
in the simulation queue, which is equivalent to the close of
the given busy interval. The detailed algorithm is presented in
Algorithm 4.
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Algorithm 4 Compact Scheduling Translator

1: {Ak: arrival time array of ωk}
2: {Sk: task start time array of ωk}
3: {AQueue: arrival queue storing initial arrival times}
4: {SQueue: ready queue for suspended jobs}
5: {Athis: arrival time of current running job τthis}
6: {Anext: arrival time of next job τnext}
7: {cthis: remaining execution time of job τthis}
8: {E&HP: ”earliest and highest priority job”}
9:

10: AQueue.pushAll(Ak)
11: Athis ← AQueue.pop(E&HP)
12: Sk.add({Athis, τthis})
13: while AQueue and SQueue are not empty do
14: Anext ← {AQueue, SQueue}.pop(E&HP)
15: if (Athis + cthis) > Anext then
16: cthis ← cthis − (Anext −Athis)
17: SQueue.push(τthis, Anext, cthis)
18: end if
19: if Anext is from AQueue then
20: Sk.add({Anext, τnext})
21: end if
22: Athis ← Anext

23: end while
24: return Sk

(a) Utilization = [0.0, 0.1] (b) Utilization = [0.1, 0.2]

(c) Utilization = [0.2, 0.3] (d) Utilization = [0.3, 0.4]

(e) Utilization = [0.4, 0.5] (f) Utilization = [0.5, 0.6]

(g) Utilization = [0.6, 0.7] (h) Utilization = [0.7, 0.8]

(i) Utilization = [0.8, 0.9] (j) Utilization = [0.9, 1.0]

Figure 23: Zoom-in view of precision ratio in each utilization
group in Condition.C.
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