
TaskShuffler: A Schedule Randomization Protocol for
Obfuscation Against Timing Inference Attacks in Real-Time Systems

Man-Ki Yoon∗, Sibin Mohan†, Chien-Ying Chen∗ and Lui Sha∗
∗Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

†Information Trust Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Email: {mkyoon, sibin, cchen140, lrs}@illinois.edu

Abstract—The high degree of predictability in real-time sys-
tems makes it possible for adversaries to launch timing inference
attacks such as those based on side-channels and covert-channels.
We present TaskShuffler, a schedule obfuscation method aimed
at randomizing the schedule for such systems while still providing
the real-time guarantees that are necessary for their safe opera-
tion. This paper also analyzes the effect of these mechanisms by
presenting schedule entropy – a metric to measure the uncertainty
(as perceived by attackers) introduced by TaskShuffler. These
mechanisms will increase the difficulty for would-be attackers
thus improving the overall security guarantees for real-time
systems.

I. INTRODUCTION

Increased computational power and connectivity in modern
real-time systems exposes hitherto unknown security flaws.
Threats to such systems are growing, both in number as well
as sophistication, as demonstrated by recent attacks [1], [10],
[21], [23]. A successful attack on systems with real-time
properties can have disastrous effects, from loss of human life
to damages to machines and/or the environment. Hence, there
is a need to develop effective protection mechanisms that foil
attacks on such systems.

An important characteristic of real-time systems, especially
those with real-time constraints is that they are predictable
by design. Designers ensure that such systems have narrow
operational ranges and fixed modes of execution for safety
guarantees. Hence, any perturbations to these operational
modes can result in the safety of such systems being com-
promised. On one hand, recent studies [14], [26]–[29], [31]
have shown that the security of real-time systems can be
improved by taking advantage of these very properties, viz.,
predictability (or regularity) in their behavior. Such security
mechanisms try to detect abnormal deviations from expected
patterns.

On the other hand, adversaries could examine and analyze
these predictable patterns of execution in real-time systems
and use them as attack surfaces. For instance, an attacker who
can determine the timing properties of the system (e.g., the
schedule of the system) will be able to launch targeted attacks
such as timing side channels to collect information about
important tasks [5], [9], [13], [16] or even set up new covert
channels [22], [25]. Such attacks can succeed due to the limited
uncertainty in the repeating schedules generated by a set of
periodic, real-time tasks (e.g., Figure 5(a) in Section III-C).
Once an attacker is able to gauge the schedule for one hyper-

period, he can predict, in a very precise fashion, the future
schedules of the system.

In this paper we propose a novel schedule randomization
protocol that we call TaskShuffler. TaskShuffler reduces the
determinism perceived by adversaries in real-time schedules. It
achieves this by generating highly unpredictable, randomized
schedules that still meet the real-time requirements of the sys-
tem. To this end, TaskShuffler retrofits priority inversions [19]
– at each point where a scheduling decision is to be made
TaskShuffler selects a random job (from those that are ready),
irrespective of its priority, subject to some constraints. In
the presence of such mechanisms, adversaries are unable to
deduce the exact order of execution of real-time tasks even
if they are able to completely reconstruct the prior behavior
of the system [5]. Hence, they face increased difficulty while
initiating timing inference attacks. Yet, designers can ensure
that the real-time guarantees of the system are not diluted.

We also introduce the concept of Schedule Entropy to
measure the increased uncertainty in the real-time schedule.
It is based on the Shannon Entropy [20] of the probability
distribution of hyper-period schedules. While it is infeasible
to obtain the exact schedule entropy for complex systems, we
present an approximation calculated from partial observations.

In summary, the main contributions of this paper are:
1) We introduce TaskShuffler– an algorithm that randomizes

the schedules of a given task set (using fixed priority
scheduling1) while guaranteeing its schedulability;

2) A metric to measure the uncertainty introduced by the
schedule randomization and present an approximated
upper-bound calculated from empirical observations; and

3) A discussion of the effects of various factors on the
randomness in the new schedules along with an extensive
evaluation.

II. SYSTEM AND ADVERSARY MODEL

We consider a uniprocessor system consisting of a set
of N periodic tasks Γ = {τ1, τ2, . . . , τN}. Each task τi
is characterized by (ei, pi, di), where ei is the worst-case
execution time, pi is the minimum inter-arrival time (or period)
between successive releases and di is the relative deadline.
Task priorities are assigned according to the Rate Monotonic
(RM) algorithm [12]. Pri(τi) represents the priority of τi.

1Although we limit ourselves to fixed-priority scheduling in this paper, the
concepts can be extended to dynamic priority algorithms.

978-1-4673-8641-8/16/$31.00 ©2016 IEEE

Pri(τj) < Pri(τi) if τj has a lower priority than τi. Let
hp(τi) be the set of tasks that have higher priorities than τi
and lp(τi) be the set of tasks with lower priority. We assume
that priorities are distinct and that di = pi for all i. Each
task τi releases a new job at each invocation. Since di = pi,
there can be at most one job per task at any time instant (if
schedulable) and thus we use the same symbol τi to denote
its jobs for notational simplicity – hence, we use the terms,
task and job, interchangeably.

We assume that the task set Γ is schedulable by a fixed-
priority preemptive scheduling. That is, the worst-case re-
sponse time of task i, wcrti, is less than or equal to the dead-
line, di, where wcrti is calculated by the iterative response
time analysis [2]. Note that since the task set is schedulable,
the following inequality is satisfied for any task τi ∈ Γ:

wcrti = ei +
∑

τj∈hp(τi)

⌈
rki
pj

⌉
ej ≤ di, (1)

where r0i = ei and wcrti = rk+1
i = rki for some k. Finally,

we assume that there is no synchronization or precedence
constraints among tasks and that ei, pi, di ∈ N

+.

A. Adversary Model

We assume that an adversary knows the timing parameters
of the task set as well as the scheduling policy. The main
objective of the adversary is to launch security attacks that
make use of deterministic schedules. For example, an attacker
may want to track the execution profile of a target task in
an attempt to launch a side-channel attack on it. Figure 1
illustrates an example scenario, in which the attacker task
tries to extract the victim task’s sensitive information (e.g., a
cryptographic key), say, using a cache side-channel attack [13],
[16]. The attacker first fills some cache sets with carefully-
structured data before the victim task executes. Then, the
victim task runs a crypto algorithm with a given input, which
will use some of the cache sets. Later, the attacker task reads
the cache sets it filled in and measures the latencies. The
attacker collects such timing information that provides hints
about the victim’s crypto algorithm and analyzes them to
extract the crypto key.

Such attacks require the adversary to perform monitoring
activities for a certain period of time to improve the ac-
curacy of the extracted information. More importantly, the
establishment of a narrow time range when the victim task
can appear will significantly increase the success rate of such
attacks. The attacker may be able to deduce a precise fixed-
priority schedule by observing busy periods from the idle task
if tasks execute in a static fashion [5]. Or the attacker may
exploit the priority relations between tasks. For example, the
attacker could hijack a task that has a lower priority than the
victim task and carefully construct an execution scenario such
that the victim task would preempt the hijacked task. This
will enable the attacker to perform the side-channel attack
described above. Similarly, the attacker may hijack a higher
priority task that runs frequently enough so that it would

Victim

Attacker Attacker

1) Fills cache sets

2) Runs a crypto algorithm.
This uses some cache sets

3) Reads cache sets
and measures latency

TimeTime range when the victim can appear

Fig. 1: A cache side-channel attack can extract a sensitive in-
formation (e.g., a crypto key) by collecting/analyzing varying
cache-access latencies due to the victim’s use of the cache.
The accuracy increases as the attacker can precisely narrow
down the time range when the victim task can appear.

execute before and after an execution of the victim task. Or
the attacker may instead insert a new task that can carry out
these activities (if the attacker was able to hide the new task
from any other detection methods).

We consider such attempts to be effective if the adversary
can predict which task runs when as precisely and as frequently
as possible. Conversely, the quality of information available
to the adversary degrades with increased uncertainty in the
timing properties of the system. We do not make any specific
assumptions on the attacker’s ability to infer task schedule and
to pinpoint the target task(s). The attacker may even have an
ability to deduce the exact schedule, which is the worst-case
scenario from the perspective of the defender. The objective
of TaskShuffler is to make it difficult for the attacker to predict
what task runs and when, even in the worst-case. Hence, the
attacks mentioned above are likely rendered ineffective.

A covert timing-channel [22], [25] is another class of
threats that can benefit from deterministic schedules; tasks
can communicate indirectly by altering scheduling behaviors
such as execution order as well as blocking and completion
times. Even in this case, the accuracy of the information that
communicates through such a channel depends heavily on
precise timing coordination and ordering.

We assume that the scheduler is trustworthy. Otherwise,
the adversary can perform more active attacks than what is
described above – this is out of scope for this paper and we
intend to analyze it in future work. There are various other
threats faced by real-time systems [14], [26]–[29], [31] – most
of these techniques are about intrusion detection and hence
complementary to those presented here.

III. SCHEDULE RANDOMIZATION PROTOCOL

We now discuss the core of TaskShuffler, viz., the protocol
for randomizing the schedule. This mechanism reduces the
inferability of the schedule for real-time task sets – hence,
even if an observer is able to record the exact schedule for a
period of time (say, one hyper-period), there is no guarantee
that the next period will show the exact same order (and
timing) of execution for the tasks. The main idea is that at
each scheduling point, we pick a random task from the ready
queue and let it execute. This is counter-intuitive to most
real-time systems where the task with the highest priority
would be picked next. The main reason why designers of

real-time systems do not follow such methods is that it (a)
leads to priority inversions [19] that, in turn, cause (b) missed
deadlines – hence, putting at risk the safety of the system.
Our randomization protocol seems to allow random priority
inversions at each scheduling decision point.

To solve this problem, we only allow bounded priority
inversions – i.e., restrict how the schedule may use priority
inversions while ensuring that the entire task set still meets
its original deadline constraints. To this end, we calculate the
amount of priority inversion that each task can endure, in the
worst-case, while using the TaskShuffler protocol. If the limit is
reached during execution, then we stop allowing lower priority
tasks to execute ahead of the current task until its outstanding
job completes execution (at which point the limit is reset). The
following sections will present the details of the TaskShuffler
protocol as well as the related analyses.

A. Bounding Priority Inversions in TaskShuffler

A key step in this protocol is to calculate the maximum
amount of time that all the lower priority tasks, lp(τi), of
each task, τi, can spend executing while τi waits. Hence, we
need to calculate the budget allowed for lower priority tasks
to execute in the priority inversion mode. We calculate this
worst-case inversion budget, Vi, for every task τi.
Vi is calculated using the worst-case interference from the

higher priority tasks. Note that without any priority inversions,
a job of τi could be delayed by up to

∑
τj∈hp(τi)

�wcrti/pj�ej
by the higher priority tasks. However, with arbitrary priority
inversions, the job could be further delayed because of the
following chain reaction: the lower priority tasks, lp(τi), delay
the higher priority ones, hp(τi), that in turn delay τi. In the
worst-case, illustrated in Figure 2, the higher priority jobs
could be maximally delayed by lp(τi) in a way that the jobs
that were released before τi’s arrival execute on or after the
release of τi.2 Accordingly, τi could take more than wcrti to
complete because of the additional interference by the deferred
executions (also known as back-to-back hit) [2], [18]. Now,
without any assumptions on the execution patterns of lp(τi),
the upper-bound interference that a job of τi can experience
due to the higher priority tasks during di is

Ii =
∑

τj∈hp(τi)

(⌈
di
pj

⌉
+ 1

)
ej. (2)

τi cannot experience more than Ii of interference from higher
priority tasks because (i) deadline is equal to period and (ii)
the task set is schedulable. Hence, no task can have two or
more outstanding jobs at any time instant.

Note that Equation (2) may not be a tight bound because
the worst-case busy interval3 of τi could be much shorter than
the deadline di and thus experience fewer delays than Ii. Also,
for some elements of hp(τi) the additional interference may

2Note that this is equivalent to hp(τi) having release jitters [2].
3A busy interval of τi (also known as a level-πi busy interval) is a time

window (t0, t] that 1) begins at t0 when all jobs of priority i or higher released
before t0 have completed and 2) ends at the first time instant t when all jobs
of priority i or higher released during (t0, t] are complete.

τi

hp(τi)

lp(τi)
di

Vi

Release

DPriority Inversion Job Execution Preemption
Deferred Execution
Due to Priority Inversion

D

D

D

Fig. 2: Worst-case interference from higher priority tasks
hp(τi) occurs when they are maximally ’packed’ into the busy
interval of τi due to priority inversions by lp(τi).

not ever show up especially if the load from the lower priority
jobs is too small to defer higher priority jobs.

Using the worst-case interference obtained above, we now
define the worst-case maximum inversion budget.

Definition 1 (Worst-case Maximum Inversion Budget). The
worst-case maximum inversion budget of task i, denoted by Vi,
is the maximum amount of time for which all lower priority
tasks lp(τi) are allowed to execute while an instance of τi is
still active (i.e., in the ready queue) while meeting its deadline
even in the worst-case scenario. It is calculated by,

Vi = di − (ei + Ii) = di −
[
ei +

∑
τj∈hp(τi)

(⌈
di
pj

⌉
+ 1

)
ej

]
.

Example 1. Consider Γ = {τ0, τ1, τ2} with the following
parameters. Then each Vi is calculated as shown in the last
column of the table:

pi ei di Vi

τ0 5 1 5 4
τ1 8 2 8 3
τ2 20 3 20 4

For instance, τ1 can let lp(τ1) = {τ2} run for 3 time units
while not missing the deadline.

Note that Vi may be pessimistic, especially for lower
priority tasks, since Equation (2) is calculated using the conser-
vative assumption that τi’s worst-case response time is di. It is
also worth noting that Vi can be negative. However, a negative
Vi does not necessarily imply that τi is not schedulable but
that, as we will see later, it might miss the deadline if priority
inversions by lp(τi) are not bounded. We will explain what it
means for the protocol when Vi < 0.

Given a task set that is schedulable, we first calculate the
worst-case maximum inversion budget Vi for each task in an
offline manner using Equation (2). Hence, the parameters of
a task now includes Vi, i.e., (ei, pi, di, Vi).

The randomization protocol guarantees that deadlines are
met by bounding priority inversions using Vi. The scheduler
enforces these budgets at run-time by maintaining a per-task
counter called remaining inversion budget vi where 0 ≤ vi ≤

Vi. This represents the time budget left for the lower priority
tasks lp(τi) to execute in a priority inversion mode while τi
has an unfinished job. The counter vi is reset to the maximum
value Vi every time τi releases a new job. It is decremented for
each time unit that τi is blocked by any lower priority job in
lp(τi). Once vi reaches zero no lower priority task is allowed
to run until τi completes.

Theorem 1. Suppose
1) Γ is schedulable with the fixed-priority preemptive

scheduling and
2) Vi ≥ 0 for some task τi ∈ Γ and lp(τi) does not delay

τi more than Vi during its busy interval.
Then τi is still schedulable with the randomization protocol.

Proof: A busy interval of τi is composed of its execution,
preemptions by hp(τi), and delay by lp(τi) due to priority
inversions. The worst-case interference that τi can experience
due to hp(τi) is bounded by Ii in Equation (2). In addition,
τi can be delayed for up to Vi by priority inversions during
its busy interval. Hence, the worst-case busy interval of τi is
bounded by

ei + Ii + Vi = ei + Ii +
(
di − (ei + Ii)

)
= di.

Therefore, τi is schedulable with the randomization.
As mentioned earlier, some task τx may have a negative

worst-case maximum inversion budget, i.e., Vx < 0. In this
case vx will always be negative and no lower priority tasks
in lp(τx) can run while τx has an outstanding job. Hence,
the busy interval of τx now includes only its own execution
and any higher priority jobs. However, lp(τx) could cause τx
to miss its deadline by inducing the worst-case interference
from the higher priority jobs, i.e., Ix. This could happen due
to the chain reaction by deferred executions described earlier
(and in Figure 2); some or all of hp(τx) released before τx’s
arrival are packed by lp(τx)’s priority inversions and this can
cause τx to experience additional delays (i.e., the ’+1’ term
in Equation (2)) – this in turn could lead to dx < (ex + Ix).

Therefore, to preserve the schedulability of such task sets
we must prevent it from experiencing such additional delays.
This is achieved when hp(τx) is not delayed by lp(τx) even
when τx has no job to run.

Definition 2 (Level-τx exclusion policy). If Vx < 0 for some
τx, no job of lp(τx) is allowed to run while any of hp(τx) has
an unfinished job.

The following theorem proves that such a task that has a
negative worst-case maximum inversion budget is still schedu-
lable with the above exclusion policy.

Theorem 2. Suppose
1) Γ is schedulable with the fixed-priority preemptive

scheduling,
2) Vx < 0 for some task τx ∈ Γ and the level-τx exclusion

policy is applied.
Then τx’s worst-case response time does not change by the
randomization and thus it is still schedulable.

Proof: From 1), τx is schedulable without any random-
ization and thus satisfies Equation (1). Now, by the level-τx
exclusion policy and Vx < 0, no job of lp(τx) can delay
hp(τx) and τx. Thus, from τx’s perspective the executions
of lp(τx) are equivalent to processor idle times. Now, τx’s
busy interval is not dependent on how hp(τx) are scheduled
among themselves but on the total demands from hp(τx)
because priority inversions among hp(τx) do not change the
total demands. The worst-case delay that can be caused by
hp(τx) occurs when they release simultaneously with τx [11],
[12] and accordingly the worst-case response time does not
change. That is, τx does not experience the additional delay by
the deferred executions of hp(τx) because the chain reaction
by lp(τx) is prevented by the level-τx exclusion policy. The
worst-case response time of τx satisfies Equation (1) and thus
is schedulable with the randomized scheduling.

We now define the following per-task property (calculated
offline) so that the scheduler can use the level-τx exclusion
policy at run-time:

Definition 3 (Minimum inversion priority). The minimum
inversion priority of τi, denoted by Mi, is the minimum priority
that can delay τi (i.e., priority inversion). It is defined by the
highest priority among lp(τi) that has a negative worst-case
maximum inversion budget. That is,

Mi = max(Pri(τj)|τj ∈ lp(τi) and Vj < 0), (3)

When there is no such a task, then Mi is set to an arbitrarily
minimum priority.

Mi determines which jobs to exclude from priority inver-
sions. That is, no job who has a lower priority than Mi can
execute as long as τi has an unfinished job. Otherwise, again,
the task whose priority is Mi (not τi) could miss its deadline
as illustrated before.

Example 2. Let Γ = {τ0, τ1, τ2, τ3, τ4} with the following
parameters:

pi ei di Vi

τ0 5 1 5 4
τ1 8 3 8 2
τ2 20 4 20 -1
τ3 40 2 40 -1
τ4 80 4 80 0

The minimum inversion priority of each task is

M0=M1=Pri(τ2),M2=Pri(τ3), and M3=M4=Pri(τ4).

Hence, τ3 and τ4 are not allowed to be scheduled when any
of τ0, τ1, τ2 has an unfinished job. This is to prevent τ2 from
missing the deadline.

At run-time, we can guarantee the level-τx exclusion policy
for all levels by examining only the minimum inversion
priority of the highest-priority job in the ready queue, due
to the following lemma:

Lemma 1. Let LR = (τ(1), τ(2), . . . , τ(|LR|)) be the ready
queue of jobs sorted in decreasing order of priority and let
R be the set of the ready jobs. If we exclude {τj |Pri(τj) <

τ(1) τ(i)τ(2)

M(1) M(i)

{τj |Pri(τj) < M(i)}

R

τ(|LR|)

R− {τj |Pri(τj) < M(1)} {τj |Pri(τj) < M(1)}

Fig. 3: τ(i) and {τj |Pri(τj) < M(i)} cannot be left over in
R− {τj |Pri(τj) < M(1)} at the same time.

M(1)} from R, then every remaining job τ(i) satisfies the level-
τ(i) exclusion policy. That is, as long as τ(i) has an unfinished
job, no task whose priority is lower than M(i) can run.

Proof: By the definition of Mi in Equation (3),

M(1) ≥ M(2) ≥ · · · ≥ M(|LR|),

and thus, as shown in Figure 3,

{τj |Pri(τj) < M(1)} ⊇ · · · ⊇ {τj |Pri(τj) < M(|LR|)}
R − {τj |Pri(τj) < M(1)} ⊆ · · · ⊆ R− {τj |Pri(τj) < M(|LR|)}.
Hence, for any i,
(R− {τj |Pri(τj) < M(1)}

)− (R− {τj |Pri(τj) < M(i)}
)
= ∅.

Using a series of set operation A−B = A ∩Bc,
(R− {τj |Pri(τj) < M(1)}

) ∩ {τj |Pri(τj) < M(i)} = ∅.
Therefore, τ(i) and any job whose priority is lower than M(i)

cannot be left over in R− {τj |Pri(τj) < M(1)} at the same
time. Thus, no job of {τj |Pri(τj) < M(i)} can be selected
when τ(i) has an unfinished job.

Hence, at each scheduling decision, we exclude all jobs
who have lower priority than M(1) from the selection. Then,
by Lemma 1, it is guaranteed that no task in lp(τx) for any
τx whose Vx < 0 can be selected as long as hp(τx) or τx has
unfinished jobs. Such τx (e.g., τ2 in Example 2) is guaranteed
to be schedulable by Theorem 2.

B. The Schedule Randomization Protocol

We now present the randomization protocol that forms the
crux of TaskShuffler. The protocol selects a new job using the
sequence of steps presented in this section (see Algorithm 1
for a formal description) whenever a scheduling decision is
to be made. Let LR = (τ(1), τ(2), . . . , τ(|LR|)) be the current
ready queue in which the ready jobs are sorted in decreasing
order of priority and R be the set of all the ready jobs.

Step 1: Finding candidates – Add the highest-priority job
τ(1) to the candidate list, LC . If its remaining inversion budget
is zero or smaller (i.e., v(1) ≤ 0), then jump to Step 2.
Otherwise, iterate over from τ(2) to τ(|LR|). Let τ(i) denote
the job in the current iteration.

[1-a] Add τ(i) to the candidate list LC if its priority is higher
than or equal to M(1), i.e., the minimum inversion priority
of the highest-priority job at present.

[1-b] Then, if τ(i) has zero or smaller remaining inversion
budget (i.e., v(i) ≤ 0), stop the iteration. Otherwise, move
to the next priority job.

Step 2: Random selection – Randomly pick a job from the
candidate list LC. Suppose it is a job of task τs and the current
time is t. It will run until the next scheduling decision.

[2-a] If τs is the highest-priority in the ready queue (i.e., τs =
τ(1)), the next decision will be made either when the job
finishes or a new job of another task arrives.

[2-b] If τs is not the highest-priority in the ready queue (i.e.,
τs �= τ(1)), the next decision will be made at time

t′ = t+min
(
vj |τj ∈ hp(τs) ∩R)

, (4)

unless a new job arrives or τs finishes before time t′. The
remaining inversion budgets of the jobs in hp(τs) ∩ R
(i.e., high priority jobs blocked by τs) will be decreased
by the amount of time τs executes until the next decision.

Note that min
(
vj |τj ∈ hp(τs) ∩ R)

in Equation (4) is
always positive. That is, every job that has a higher priority
than the selected job has some remaining inversion budget.
Otherwise, τs would not have been added to LC at Step [1-b].

Theorem 3. If Γ is schedulable with the fixed-priority preemp-
tive scheduling, then it is still schedulable with the schedule
randomization protocol described above.

Proof: The theorem is an immediate application of Theo-
rems 1 and 2 along with Lemma 1. First, since Γ is schedulable
with the fixed-priority preemptive scheduling, condition 1) of
both Theorem 1 and 2 is satisfied. Now, any task in Γ falls
into either of the following cases:

• For any τi whose Vi ≥ 0, Step [1-b] and Equation (4)
guarantee that τi cannot be delayed more than Vi by lower
priority jobs. This satisfies conditions 2) of Theorem 1.
Hence, τi is schedulable.

• For any τi whose Vi < 0, Step [1-a] guarantees the
exclusion of lp(τi) when any of hp(τi) is in the ready
queue due to Lemma 1. This satisfies condition 2) of
Theorem 2. Hence, τi is schedulable.

Therefore, any task τi in Γ is schedulable with the random-
ization protocol.

Example 3. Figure 4 shows an example schedule (derived
from Example 2) after application of the randomization pro-
tocol.4 It also shows how the vi values change as tasks execute.

• At t = 0, the highest-priority job is τ0 and its minimum
inversion priority, M(1), is the priority of τ2. Hence, due
to the level-τ2 exclusion policy, lp(τ2) = {τ3, τ4} are
excluded from the selection. The candidate list is LC =
{τ0, τ1, τ2}. Among them, τ2 is randomly selected. The
next scheduling decision will be made after 2 time units
because of Equation (4) where min(v0, v1) = 2.

• At t = 2, v1 becomes 0 so lp(τ1) cannot run until τ1
ends. At this point, LC = {τ0, τ1} and τ1 is randomly

4Assuming that all tasks are initially released at time 0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 3 2 1 0 4 3 2 1 4 3 2 4
2 1 0 2 2
-1
-1
0

τ0
τ1
τ2
τ3

v0
v1
v2
v3

τ4

v4 M(1)

Fig. 4: A randomized schedule of Γ from Example 2.

selected to run. The next decision will be made after a
further min(v0) = 2 time units.

• Going further along, at t = 10, a new job of τ0 arrives
and thus a new scheduling decision is made. In this case,
τ1 is selected randomly.

• At t = 13, the highest-priority job is τ3 and so M(1) is
lowered to the minimum priority. However, v3 < 0 and
thus LC = {τ3}. Hence, it is selected to run.

• At t = 15, a new job of τ0 arrives and thus M(1) is raised
back. Hence τ3 and τ4 are excluded from LC.

C. Idle Time Scheduling

Figure 5(a) shows the schedule of the task set from Ex-
ample 1 for the duration of 15 hyper-periods (each row is
one hyper-period). The schedules in the figure are generated
by the fixed-priority preemptive scheduling. The number i
in each slot depicts the fact that task i executed in that
slot; slots with i = 3 represent idle times. Figure 5(b) is
the schedule generated by the randomization protocol and
shows more variations than (a). However, the randomization
is limited in that the task executions appear at similar places
over multiple hyper-periods, i.e., sandwiched between the
deterministic idle time slots. This is because we randomized
only the task schedules. Hence, there exist separations between
task executions and idle times because of the work-conserving
nature of the scheduling algorithm. While this increases the
schedule randomness, it is still fairly predictable and can be
susceptible to timing inference attacks.

To increase the randomness of the schedules, the range
within which a task can appear should be as wide as possible.
This can be done by making the worst-case busy interval of
each task as long as possible. Given a fixed workload the
only way to do so is intentionally idling the processor at
seemingly random times. We achieve this by treating idle times
as instances of an additional task in the system, viz., the
idle task, τI , and applying the aforementioned randomization
protocol to the augmented task set, Γ′ = Γ ∪ {τI}.5 The idle
task has (a) the lowest-priority, (b) infinite period and deadline
and (c) infinite execution time. Hence, the idle task can force
all other tasks in the original set Γ to maximally consume their

5In fact, in most real-time operating systems, a special task called idle task
runs when there is no normal task to run. Hence we can easily incorporate the
idle task into TaskShuffler and it is treated no differently than other, normal,
tasks from the perspective of the scheduler.

(a) No randomization

(b) Randomization (task only)

(c) Randomization (w/ idle time scheduling)

(d) Randomization (w/ idle time scheduling and fine-grained switching)

Fig. 5: Schedules of Γ in Example 1 with or without the
randomization for the duration of 15 hyper-periods.

inversion budgets. This effectively makes tasks appear across
a wider range of times. Figure 5(c) shows the randomized
schedule of the task set that now includes the idle task as part
of the schedule randomization protocol. Compared to both (a)
and (b), the idle times and task executions spread randomly
over wider ranges. As will be seen in Section V, this idle time
scheduling can significantly increase the randomness in the
schedule, especially for low to medium system loads.

D. Fine-grained Switching

Scheduling decisions are made at various points in our
system, viz., (a) a new job arrives, (b) the current job finishes
or (c) some job(s) can no longer allow priority inversion (see
Step [2-b] from Section III-B). When Vi values are large
enough for most tasks, jobs will tend to run to completion
once scheduled. Hence, to further decrease the inferability of
the schedule, we allow a job to randomly yield to others in the
middle of their execution even if the job’s continued execution
would not cause missed deadlines in other jobs. This is done
by modifying Equation (4) to t′ = t+Δt, where Δt is selected
uniformly from the range[

1,min
(
vj |τj ∈ hp(τs) ∩R)]

.

Figure 5(d) shows the schedule of the task set randomized with
both, idle time scheduling as well as fine-grained switching.

Algorithm 1 TASKSHUFFLER(t, Γ′, LR)
t: the current time
Γ′: the augmented task set Γ ∪ {τI}
LR: the sorted ready queue. LR = (τ(1), τ(2), . . . , τ(|LR|))

1: LC ← τ(1) � i.e., the highest-priority job
2: if v(1) ≤ 0 then
3: return τ(1)
4: end if
5: for τ(i) = τ(2), . . . , τ(|LR|) do
6: if Pri(τ(i)) ≥M(1) then
7: LC ← LC · τ(i) � i.e., add τ(i) to LC
8: end if
9: if v(i) ≤ 0 then

10: Stop the iteration
11: end if
12: end for
13: idx ∼ [1, |LC |] � i.e., random selection
14: τs ← LC[idx]
15: if idx > 1 then � i.e., priority inversion
16: Δt ∼

[
1,min

(
vj |τj ∈ hp(τs) ∩R

)]

17: Schedule next decision at t′ = t+Δt
18: end if
19: return τs

E. Summary of the TaskShuffler Protocol

Algorithm 1 summarizes the randomization protocol that
has been described so far. The procedure TASKSHUFFLER(t,
Γ′, LR) is called whenever a scheduling decision is to be
made and it returns a randomly selected task (that includes
the idle task) from the current ready queue LR. LINE 1–12
is the part that finds the candidate jobs. The list includes the
highest-priority job and any jobs that can afford to wait for a
lower priority task after application of the level-τx exclusion
policy. In LINE 13–18, a random selection is made from the
candidate list. If a priority inversion is to occur then the next
decision event is scheduled at time t′, unless a new job of
some task arrives or the selected job τs completes before t′.

The protocol iterates over the jobs in the current ready queue
once and makes a single draw from the candidates. Hence, the
complexity of our randomization algorithm is O(n), where n
is the number of tasks, assuming a single draw from a uniform
distribution (LINE 16 and LINE 20) takes no more than O(n).

IV. SCHEDULE ENTROPY

Given a randomization algorithm such as the one presented
in Section III we need to measure the amount of uncertainty
that has been introduced into the schedule since the main
objective was to obfuscate the inherent determinism in the
scheduling information. We also need to quantify the random-
ness between different schedules. To tackle these issues, we
introduce a new metric called schedule entropy. The concept of
entropy has been used in the security field [3], [8] to quantify
the uncertainty in the amount of information available in for
example, ciphertext. We use it as a metric to measure the
randomness (or unpredictability) in the real-time schedule.

Let an L-dimensional random vector S = (S0, . . . , SL−1)
represent a hyper-period schedule whose length is L. Each el-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pr(st = 0)
Pr(st = 1)
Pr(st = 2)
Pr(st = 3)

HΓ(St)

Fig. 6: Empirical Pr(st) values for the task set (including the
idle task) from Example 1 and slot entropies for t = 0, . . . , 15.

ement St is a discrete random variable with possible outcomes
{1, 2, . . . , N} where N is the total number of tasks in Γ. If
St = i, then task i appears at slot t.

We now define the schedule entropy of a task set as a
measure of the amount of uncertainty in predicting a particular
hyper-period schedule, using the Shannon entropy [20]:

Definition 4 (Schedule entropy). The schedule entropy of a
task set Γ is the Shannon entropy of the distribution of the
hyper-period schedules. Hence,

HΓ(S) = −
N∑

s0=1

· · ·
N∑

sL−1=1

Pr(s0, . . . , sL−1)

log2 Pr(s0, . . . , sL−1),

where Pr(s0, . . . , sL−1) is the probability mass func-
tion of a hyper-period schedule. The summand is 0 if
Pr(s0, . . . , sL−1) = 0.

In practice, it is infeasible to find the joint probability
mass function of S, i.e., Pr(s0, . . . , sL−1), especially if the
length of the hyper-period, L, is large since this requires
an enumeration of all possible schedules of length L. This
requires an asymptotic complexity of O(NL) as there can be
at most N choices each time. Hence, we propose the use of an
approximation of the true schedule entropy instead. We first
define slot entropy:

HΓ(St) = −
N∑

st=1

Pr(st) log2 Pr(st), (5)

where Pr(st) is the probability mass function of a task ap-
pearing at slot t. It measures the uncertainty of job executions
at each time slot t. Figure 6 shows empirical Pr(st) values
for the task set (including the idle task) from Example 1 for
t = 0, . . . , 15. The figure shows the situation when the tasks
have executed for 10, 000 hyper-periods (they release at the
same slot in every hyper-period). The figure shows that certain
tasks are more likely to appear than others in particular slots.
For instance, the probability of seeing τ0 at t = 1 is smaller
than that for other tasks although Pr(s0) were uniform. This
is because τ0 completes if it was selected at time t = 0. This
results in the lower Pr(s1 = 0) value.

The upper-bound of slot entropy is log2 nt where nt is
the number of distinct tasks that can appear at slot t. This
maximum value is achieved when Pr(st) is uniform across
those nt tasks. Hence, slot entropy increases if more tasks
can appear at a slot with similar probabilities.

The difficulty in deriving the true schedule entropy stems
from the dependencies between slot entropies where a schedul-

ing decision made at slot t affects what happens in slot
t + 1 and onward. Therefore, an enumeration of all possible
schedules becomes a combinatorial problem. Hence, we com-
pute an approximation of the schedule entropy by assuming
independence between the slot entropies:

Definition 5 (Upper-approximated schedule entropy). An
upper-approximation of the schedule entropy of a task set Γ
is defined as

H̃Γ(S) =
L−1∑
t=0

HΓ(St). (6)

I.e., it is the sum of all slot entropies over a hyper-period.

This is due to that the joint entropy is less than or equal to
the sum of the individuals [20]:

HΓ(S0, . . . , SL−1) ≤ HΓ(S0) + · · ·+HΓ(SL−1). (7)

The equality holds if and only if the scheduling decisions are
independent. Since the assumption does not hold in general,
the true schedule entropy is always bounded by H̃Γ(S).

Despite the approximation, H̃Γ is a strong enough crite-
rion to compare the randomness across different, randomized
schedules. That is, if HΓ(S1) < HΓ(S2), then it is highly
likely that H̃Γ(S1) < H̃Γ(S2) for two different schedules
S1 and S2. To assess the correlation between the two, we
measured the true and the approximated schedule entropies
for 900 randomly-generated small task sets by simulating
each one for 1 million hyper-periods with our randomization
protocol. We limited the hyper-period length, L, to 20, because
otherwise the simulation cannot cover most of the possible
schedules and thus we cannot obtain the probability mass
function of hyper-period schedules which is used to calculate
the true schedule entropy.6 Figure 7 shows that there is a
strong correlation between the true and the approximated
schedule entropies. The true schedule entropy increases when
more unique hyper-period schedules can be generated. Given
a fixed task set, we can generate more, unique, schedules
by increasing variations at slots (i.e., more tasks appear at
each slot) – this leads to higher entropies in such slots. Also,
even if the number of unique schedules is fixed, the true
entropy is higher if the probability distribution of schedules is
less skewed; i.e., there is a similar probability of generating
each of the schedules. In such situations, there is increased
uncertainty in observing particular tasks in some slots and,
thus, their slot entropies increase. Hence, a higher HΓ(S)
would likely result in a higher H̃Γ(S). Note that these relations
between the true and the approximated entropies do not
depend on the length of the hyper-period. Instead, it affects
the approximation error as can be seen from Figure 7. This
is because the error due to the assumption of independence
between slots (see the inequality in (7)) accumulate with each
slot. Hence, the upper-approximated schedule entropy, H̃Γ(S),

6We used the scheduling simulator used in our evaluation in Section V.
The parameters are N ∈ {3, 4, 5}, pi ∈ {4, 5, 10, 20}, ei ∈ [1, . . . , 10].
The 900 sets were equally generated from three utilization groups – [0.3, 0.4],
[0.6, 0.7], and [0.9, 1.0].

True schedule entropy
0 5 10 15 20 25 30 35 40

U
pp

er
-a

pp
ro

xi
m

at
ed

 s
ch

ed
ul

e
en

tr
op

y

0

5

10

15

20

25

30

35

40

Correlation = 0.9901

Fig. 7: Correlation between the true, HΓ, and the upper-
approximated, H̃Γ, schedule entropies.

should be used to compare the relative randomness of two
schedules. From observing H̃Γ(S1) < H̃Γ(S2), one can say
HΓ(S1) < HΓ(S2), with a confidence proportional to the
difference.

V. EVALUATION

We carry out an extensive evaluation of the TaskShuffler
protocol using randomly generated synthetic task sets to gain
a better understanding of the effect of the various parameters
on the schedule randomization.

A. Evaluation Setup

We generated 6, 000 random, synthetic, task sets evenly
from ten base utilization groups, [0.02+0.1·i, 0.08+0.1·i] for
i = 0, ..., 9, i.e., 600 instances per group. The base utilization
of a set is defined as the total sum of the task utilizations. Each
group has six sub-groups, each of which has a fixed number
of tasks – 5, 7, 9, 11, 13 and 15. This was to generate task
sets with an even distribution of tasks. Each task period is a
divisor of 3000 (but not smaller than 10). This was to set a
common hyper-period (i.e., 3000) over all the task sets. The
task execution times are randomly drawn from [1, 50]. The
deadline for each task is the same as its period and priorities
are assigned according to the Rate Monotonic algorithm [12].

All of the 6, 000 random sets are guaranteed to be schedu-
lable by the fixed-priority preemptive scheduling with the
release jitters up to 30% of the period for each task.7 Note
that with no release jitters, the schedule entropy by the fixed-
priority scheduling (i.e., without our randomization protocol)
is always 0 as the same schedule repeats every hyper-period
(see Figure 5(a)). This would prevent us from evaluating
how much randomness can be introduced by the TaskShuffler
protocol compared to the base case. Hence, we allow the
simulator to randomly introduce release jitters up to 10%. At

7Note that having release jitters requires a change only in the worst-case
maximum inversion budget in Definition 1; it becomes Vi = di −Ji− (ei+
Ii), where Ji is the maximum release jitter of task i. Also, Ii does not change
as it already includes the jitter effect [2]. It is straightforward to show that
the analysis in Section III still holds in the presence of release jitters.

the end of Section V-B, we discuss the impact of different
jitter values on the schedule randomization.

Our simulator schedules each task set using the fixed-
priority preemptive scheduling policy. It can simulate both
situations – with or without the TaskShuffler protocol.

We use H̃Γ,j , the approximated schedule entropy calculated
by Equations (5) and (6), for schedules generated until the jth

hyper-period. We declare the entropy as having converged at
the kth hyper-period if

Δ(H̃Γ,j−1, H̃Γ,j) =

∣∣∣∣H̃Γ,j − H̃Γ,j−1

H̃Γ,j−1

∣∣∣∣ < 0.0001 (i.e., 0.01%)

for j = k − 999, . . . , k − 1, k, consecutively. The simulation
terminates if it reaches a pre-defined time limit (e.g., 10, 000
hyper-periods). We confirmed that the entropy always con-
verged prior to the 10, 000th hyper-period in all task sets.

B. Results

We first evaluate how much our TaskShuffler protocol can
increase the unpredictability of schedules. To measure this,
we ran the simulation with and without the randomization
algorithm and measured the schedule entropy at the end of the
simulations (at which point the entropies have converged). Fig-
ure 9 shows the average schedule entropy for each utilization
group for the following schemes: (a) the regular fixed-priority
schedule, i.e., no randomization, (b) the randomization applied
only to tasks in the schedule, (c) randomization applied to
tasks and the idle times and finally, (d) randomization+idle
time scheduling and the fine-grained switching. Figure 8
breaks it down into the per-task set entropies. The results

Utilizations
[0.0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1.0]

A
ve

ra
ge

 S
ch

ed
ul

e
E

nt
ro

py

0

1000

2000

3000

4000

5000

6000

7000
No randomization
Randomization (Base)
Randomization (w/ idle time scheduling)
Randomization (w/ idle time scheduling + fine-grained switching)

Fig. 9: The average schedule entropies gained by the schedule
randomization protocol.

clearly show that the randomization protocol can significantly
increase the schedule entropies. The idle time scheduling
shows a significant increase in the overall randomness in
the system and fine-grained switching improves it further.
However, the effects of idle time scheduling is less for higher
utilizations task sets (i.e., U > 0.8) simply because there are
not enough idle times that can be slotted in and randomized
among the other tasks. Figure 8 also shows the trend that the
entropy increases for larger task sets if the utilization is similar.
This is because the slot entropies increase if one can observe
more tasks per slot.

It is interesting to note from the results in both Figures 8
and 9 that our randomization protocol is most effective when

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

ed
ul

e
en

tr
op

y

0

1000

2000

3000

4000

5000

6000

7000

8000
No randomization

15 Tasks
13 Tasks
11 Tasks
9 Tasks
7 Tasks
5 Tasks

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

ed
ul

e
en

tr
op

y

0

1000

2000

3000

4000

5000

6000

7000

8000
Randomization (Base)

15 Tasks
13 Tasks
11 Tasks
9 Tasks
7 Tasks
5 Tasks

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

ed
ul

e
en

tr
op

y

0

1000

2000

3000

4000

5000

6000

7000

8000
Randomization (w/ idle time scheduling)

15 Tasks
13 Tasks
11 Tasks
9 Tasks
7 Tasks
5 Tasks

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

ed
ul

e
en

tr
op

y

0

1000

2000

3000

4000

5000

6000

7000

8000
Randomization (w/ idle time scheduling + fine-grained switching)

15 Tasks
13 Tasks
11 Tasks
9 Tasks
7 Tasks
5 Tasks

Fig. 8: The per-task set schedule entropy for varying number of tasks and utilizations.

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 o
f V

i (
m

ax
im

um
 in

ve
rs

io
n

bu
dg

et
)

to
 p

i (
pe

rio
d)

 r
at

io

-0.2

0

0.2

0.4

0.6

0.8

1
0

200

400

600

Number of task sets that have tasks
with nagative maximum inversion budget

Fig. 10: The average of Vi

pi
in each task set (scatter plot) and

the number of task sets that have any Vi < 0 (line plot).

the system has a medium load. When the system load is
low, the processor is mostly occupied by idle times and the
amount of time spent in normal task executions is too small
to show enough variations. In such a case, the candidate job
list consists mostly of a few tasks. Hence, the improvement
due to the basic randomization (i.e., task-only randomization)
compared to the scheme with no randomization is less when
the utilization is low. Now, as the utilization increases, there
are a larger number of candidates for randomization. However,
if the utilization further increases, fewer tasks are available
for execution in the priority inversion mode since they have
much smaller maximum inversion budgets (Vi) even though
more candidate jobs are available – they experience greater
interference from higher priority tasks. Figure 10 demonstrates
this effect – the figure shows the average of maximum inver-
sion budgets to period ratio in each set, i.e.,

∑
τi∈Γ

Vi

pi
/N .

Smaller ratios indicate fewer priority inversions are available.
The impact is bigger if some tasks have negative maximum
inversion budgets, Vx < 0, because of the level-τx exclusion
policy from Section III-B (see Definition 2); lp(τx) cannot run
while hp(τx) have unfinished jobs. Hence, the number of jobs
in the candidate list (and thus slot entropies) is likely low when
there are many such tasks. As the plot in Figure 10 shows,
a higher utilization indicates that more tasks have negative
maximum inversion budgets. Hence, the schedule entropies
are limited as we saw previously in Figures 8 and 9.

One other way to evaluate the schedule randomization is by
widening the range within which each task can appear. That
is, the wider the range, the harder it is to predict when tasks
would execute. Hence, we measured the first and the last time
slots where each task appears and used the difference between
them as the execution range for the task. Figure 11 shows the
geometric mean of the task execution range to period ratios
in each task set. Without the randomization, the ratio is small,
i.e., tasks appear within narrow ranges because of the work-
conserving nature – hence the schedules are more predictable.
As the utilization grows, the ranges become wider simply
because the worst-case response times of tasks (especially
for lower priority tasks) increase due to the higher loads.

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

re
ag

e
ra

tio
s

of
 th

e
ta

sk
 e

xe
cu

tio
n

ra
ng

e
to

 p
er

io
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Full randomization
No randomization

Fig. 11: The average ratio of the task execution range to period.

Now, with the TaskShuffler protocol turned on, tasks appear
in wider ranges as indicated by the higher means in the figure
– priority inversions and idle time randomization increase
task response times (especially for higher priority tasks). The
priority inversions can also draw lower priority jobs close to
their release times. The result also shows that the ranges get
narrower for higher utilization task sets. This can be explained
by the results in Figure 10 – tasks have less space to yield to
lower priority ones as the utilization grows and the ranges that
the latter can execute can be further limited by the level-τx
exclusion policy.

As mentioned before, release jitters can introduce some
randomizations. In order to assess the impact of release jitters
on the schedule randomization, we performed additional ex-
periments with (a) no release jitters and (b) the maximum jitter
of 30% of the period for each task. Figure 12 compares the
average schedule entropies with and without randomization for
different values of maximum release jitter. First of all, without
the randomization, the entropy is zero when there is no release
jitter. As tasks experience more jitters, the entropies increase
because of varying job-release points, as can be seen from
the base case (i.e., no randomization). We can also see this
trend from the randomized schedules when utilization is lower

Maximum Release Jitter
0% 10% 30%

A
ve

ra
ge

 S
ch

ed
ul

e
E

nt
ro

py

0

1000

2000

3000

4000

5000

6000

7000
No randomization
Randomization (w/ idle time scheduling + fine-grained switching)

Utilization

Fig. 12: The impact of release jitters on schedule entropies.
In each group, the utilization grows from left to right.

than 0.5. However, release jitters could negatively affect the
randomization because the maximum inversion budget reduces
as the maximum release jitter increases. Hence, as we can see
from the higher utilization groups, the entropies decrease when
the maximum jitter becomes 10%. Now, with higher jitters
(i.e., 30%), the entropies of the task sets with high utilizations
turn to increase. This is because the randomization effect due
to varying job-release points outweigh the reduction due to
smaller inversion budget. That is, the release jitters have a high
impact on the schedule randomness in such environments. This
is also why the differences between the entropies of the base
case and the randomization are not significant compared to
the case with smaller jitters. Our method is thus more effective
when tasks experience smaller release jitters, which is a harder
situation from the defender’s perspective as that increases the
chance that the attacker can narrow down the time range within
which the victim task can appear.

VI. LIMITATIONS AND DISCUSSION

While TaskShuffler does increase the difficulty for adver-
saries to launch timing inference attacks, there are still some
areas for improvement for the mechanisms presented in this
paper. For instance, we did not attempt to derive an analytic
upper-bound on the schedule entropy. An interesting question
would be how to compute a tight bound and also the ex-
pected entropy given a task set and a particular randomization
algorithm. These can answer questions such as (a) which
algorithm can introduce more uncertainty in schedules or (b)
how unpredictable (therefore how resilient to timing inference
attacks) a task set will be – all without running extensive
simulations. In addition, such analyses can enable additional
optimizations in the randomization protocol for increased
security. We intend to address these topics in future work.

Finally, there is cost to be assessed for the randomization
protocol. Due to the increased variation in the generated
schedules, one might expect an increase in the number of
context switches. Hence, we measured the average number of
context switches per hyper-period. Then, for each of the 6, 000
task sets, we calculated the ratio between configurations with
and without randomization. Figure 13 shows the results for
two configurations – randomization with idle scheduling (top)
and that with both idle scheduling and fine-grained switching
(bottom). The horizontal/step-like lines represent the first,
second and third quartiles of the ratio values in each utilization
group. First of all, the trends are similar to those in Figure 9
– higher entropy results in more context switches and vice
versa. Second, the priority inversion itself does not increase
the number of context switches much – this can be seen by
comparing the two plots. Without the fine-grained switching,
the extra context switches number 10% in average for the
utilization group of [0.5, 0.6] (which achieved the highest
average entropy, in Figure 9). We can see from the bottom plot
that the fine-grained switching is the dominant source of the
increased number of context switches. The additional switches
number about 80% in average for the utilization group of
[0.5, 0.6]. Hence, it is advisable to restrict the fine-grained

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f t
he

 a
ve

ra
ge

 n
um

be
r

of
 c

on
te

xt
 s

w
itc

hi
ng

s
pe

r
hy

pe
r-

pe
rio

d
by

 r
an

do
m

iz
at

io
n

to
 th

at
 w

ith
 n

o
ra

nd
om

iz
at

io
n

1

1.5

2

2.5

3 Without fine-grained switching

Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

3 With fine-grained switching

Fig. 13: The increase in the number of context switches by
the schedule randomization with (bottom) and without (top)
the fine-grained switching.

switching or to limit the minimum switching interval for such
systems that are sensitive to context switch overheads. As
Figure 9 has shown, the schedule entropy can be significantly
increased even without the fine-grained switching. While these
costs will decrease the overall performance of such systems,
we believe that TaskShuffler provides increased security in a
measurable way. Hence, system designers can know the cost
for preventing timing inference attacks and account for it in
their designs.

VII. RELATED WORK

Researchers have demonstrated that real-time scheduling
can be a source for covert channels [22], [24], [25]. Son et al.
[22] showed that RM scheduling can be the victim of covert
timing channels. Völp et al. [25] proposed modifications to the
scheduler that alters thread blocks that may leak information
to the idle thread – it aims to avoid the exploitation of timing
channels while achieving real-time guarantees. They also
examined covert channels in shared resources used in real-time
systems and developed transformed locking protocols [24].
Mohan et al. [15] considered information leakage through
storage timing channels using architectural resources (e.g.,
caches) shared between real-time tasks with different security
levels. The authors introduced a modification to the fixed-
priority scheduling algorithm and a state cleanup mechanism
to mitigate information leakage through shared resources. This
work was further extended to a more generalized task model
[17]. Nonetheless, such countermeasures may not be com-
pletely effective against timing inference attacks that focus on
the deterministic scheduling behaviors. TaskShuffler works to
break this very predictability (inherent in real-time scheduling)
by introducing randomness.

The notion of randomization has been used in many studies
to harden security mechanisms. Zhang et al. [30] introduced
cache random-eviction and cache random permutation for
removing cache side-channels and mitigating the information
leakage. Chan et al. [4] adopted random key distribution and

presented random-pairwise keys scheme to reduce the likeli-
hood of communication channels being compromised in sensor
networks. Davi et al. [7] addressed code-reuse attacks by
proposing a software diversification tool that applies Address
Space Layout Randomization (ASLR) to randomize the code
throughout all sections, on-the-fly, for each execution instance.
Crane [6] further raised the security of the code randomization
to another level by enabling execute-only memory in modern
CPUs to eliminate code leakage. Nevertheless, our work
differs from the above since we are reducing the inferability
of real-time system schedules. Also, these, existing techniques
did not have to contend with real-time constraints.

VIII. CONCLUSION

Timing inference attacks can be quite insidious, especially
in real-time systems. Adversaries are able to take advantage
of the precise properties of such systems that make them safer
– their predictable execution patterns. By using protocols such
as the ones presented by TaskShuffler, designers of real-time
systems are now able to improve their security guarantees,
thus ensuring increased safety – which is the main goal for
such systems. Future real-time systems can now include, as
part of their design, the resources necessary for implementing
such techniques. We are also able to provide a glimpse into
the means necessary to measure the security of a system –
albeit for those with real-time constraints – but this is a start
towards developing metrics for the field of systems security in
general.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and the shepherd for their valuable comments and suggestions.
This work is supported in part by grants from NSF CNS 13-
02563, NSF CNS 12-19064, NSF CNS 14-23334, ONR/Navy
N00014-12-1-0046, and ONR/Navy N00014-13-1-0707. Any
opinions, findings, and conclusions or recommendations ex-
pressed here are those of the authors and do not necessarily
reflect the views of sponsors.

REFERENCES

[1] Jeep Hacking 101. IEEE Spectrum, Aug 2015. http://spectrum.ieee.org/
cars-that-think/transportation/systems/jeep-hacking-101.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive schedul-
ing. Software Engineering Journal, 8:284–292, 1993.

[3] C. Cachin. Entropy Measures and Unconditional Security in Cryptogra-
phy. PhD thesis, ETH Zurich, 1997. Hartung-Gorre Verlag, Konstanz.

[4] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes
for sensor networks. In Proc. of the IEEE Symposium on Security and
Privacy, 2003.

[5] C.-Y. Chen, S. Mohan, and R. Bobba. Schedule-based side-channel
attack in fixed-priority real-time systems. Technical report, University of
Illinois at Urbana Champaign, 2015. http://hdl.handle.net/2142/88344.

[6] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz. Readactor: Practical code randomization
resilient to memory disclosure. In Proc. of the IEEE Symposium on
Security and Privacy, 2015.

[7] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi. Gadge me
if you can: Secure and efficient ad-hoc instruction-level randomization
for x86 and arm. In Proc. of the ACM SIGSAC symposium on
Information, computer and communications security, 2013.

[8] Y. Dodis and A. Smith. Entropic security and the encryption of high
entropy messages. In Proc. of the International Conference on Theory
of Cryptography, 2005.

[9] P. C. Kocher. Timing attacks on implementations of diffie-hellman,
RSA, DSS, and other systems. In Proc. of the Annual International
Cryptology Conference, volume 1109 of Lecture Notes in Computer
Science. Springer, 1996.

[10] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage.
Experimental security analysis of a modern automobile. In Proc. of
the IEEE Symposium on Security and Privacy, 2010.

[11] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proc. of the IEEE Real-Time Systems Symposium, 1990.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[13] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee. Last-level cache
side-channel attacks are practical. In Proc. of the IEEE Symposium
on Security and Privacy, 2015.

[14] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. S3A:
Secure system simplex architecture for enhanced security and robustness
of cyber-physical systems. In Proc. of the ACM Conference on High
Confidence Networked Systems, 2013.

[15] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. Bobba. Real-time systems
security through scheduler constraints. In Proc. of the Euromicro
Conference on Real-Time Systems, 2014.

[16] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermea-
sures: The case of aes. In Proc. of the Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, 2006.

[17] R. Pellizzoni, N. Paryab, M.-K. Yoon, S. Bak, S. Mohan, and R. Bobba.
A generalized model for preventing information leakage in hard real-
time systems. In Proc. of the IEEE Real-Time Embedded Technology
and Applications Symposium, 2015.

[18] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proc. of the IEEE Real-Time Systems
Symposium, 1988.

[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Trans. Comput.,
39(9):1175–1185, Sept. 1990.

[20] C. Shannon. A mathematical theory of communication. Bell System
Technical Journal, The, 27(3):379–423, July 1948.

[21] D. Shepard, J. Bhatti, and T. Humphreys. Drone hack: Spoofing attack
demonstration on a civilian unmanned aerial vehicle. GPS World, August
2012.

[22] J. Son and J. Alves-Foss. Covert timing channel analysis of rate
monotonic real-time scheduling algorithm in mls systems. In Proc. of
the IEEE Information Assurance Workshop, 2006.

[23] H. Teso. Aicraft hacking. In Proc. of the Fourth Annual HITB Security
Conference in Europe, 2013.

[24] M. Völp, B. Engel, C.-J. Hamann, and H. Härtig. On confidentiality
preserving real-time locking protocols. In Proc. of the IEEE Real-Time
Embedded Technology and Applications Symposium, 2013.

[25] M. Völp, C.-J. Hamann, and H. Härtig. Avoiding timing channels
in fixed-priority schedulers. In Proc. of the ACM Symposium on
Information, Computer and Communication Security, 2008.

[26] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha. Learning
execution contexts from system call distribution for intrusion detection
in embedded system. 2015. http://arxiv.org/abs/1501.05963.

[27] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha. SecureCore: A
multicore-based intrusion detection architecture for real-time embedded
systems. In Proc. of the IEEE Real-Time Embedded Technology and
Applications Symposium, 2013.

[28] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha. Memory Heat Map:
Anomaly detection in real-time embedded systems using memory behav-
ior. In Proc. of the ACM/EDAC/IEEE Design Automation Conference,
2015.

[29] M. M. Z. Zadeh, M. Salem, N. Kumar, G. Cutulenco, and S. Fischmeis-
ter. SiPTA: Signal processing for trace-based anomaly detection. In
Proc. of the International Conference on Embedded Software, 2014.

[30] T. Zhang and R. B. Lee. New models of cache architectures charac-
terizing information leakage from cache side channels. In Proc. of the
Annual Computer Security Applications Conference, 2014.

[31] C. Zimmer, B. Bhatt, F. Mueller, and S. Mohan. Time-based intrusion
detection in cyber-physical systems. In Proc. of the International
Conference on Cyber-Physical Systems, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

