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1 Introduction

This article is intended to document the implementation of the restart-based framework on a
realistic platform. The implementation mainly consists of two parts: (i) a main controller platform
and (ii) a Root of Trust (RoT) module. The main controller runs tasks for user’s application.
Functions and tasks for the secure execution interval (SEI) are also handled on the same platform.
The RoT module acts as a trustworthy hardware that can provide the security guarantees offered by
the restart-based framework. An high level overview diagram that shows the connection between
the main controller and the RoT module is given in Figure 1.

Figure 1: A high level overview of the connection between the main controller platform and the
RoT module.

In the following content, §2 and §3 provide the details of the implementation for RoT module
and the main controller respectively. §4 talks about the wiring between the RoT module and the
main controller. §6 describes a demonstrative application that we have implemented to demonstrate
the use of the proposed restart-based protection.

2 Root of Trust (RoT) Module

The main function of the RoT is to act as a trustworthy hardware that generates a configurable
reset signal and enforces the secure execution interval. What follows below introduces the details
of the RoT module we have implemented.

2.1 Hardware (MSP-EXP430G2)

A MSP-EXP430G2 board is used to realize the RoT module. The MSP-EXP430G2 board is a
development board specifically designed for MSP430 series micro-controllers developed by Texas
Instruments (TI). It is equipped with a MSP430G2452 [5], an instance of the MSP430 micro-
controllers. The board is operated under 3.3V power which drives the MSP430G2452 micro-
controller as well as its inputs/outputs. Figure 2 displays the board and its pinout.
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Figure 2: MSP-EXP430G2 board pinout.

The Timer A in the micro-controller is used to build the restart timer. It is a 16-bit timer that
is configured to run at a clock rate of 1MHz (i.e., 1us per timer count) with using its integrated
digitally controlled oscillator (DCO). That is, the minimum restart time supported by the RoT
module is 1us. We use a counter inside the interrupt handler of Timer A to extend the timer with
an adjustable factor, so the restart timer can count up to the range based on the application’s
needs.

2.2 I2C Interface

To make the timer configurable to the host (the platform that uses the RoT module), a communi-
cation interface is provided. We choose I2C as the interface in our design since I2C is commonly
adopted in many passive components (e.g., sensors, memory modules). On the MSP430G2452
micro-controller, pin P1.7 and P1.6 can be configured as SDA and SCL for I2C respectively, as
shown in Figure 2.

2.3 RoT Control Flow

The RoT timer module listens incoming commands from the I2C interface connected to the host.
The RoT timer module maintains two timers: (i) a secure execution interval timer and (ii) a
restart timer.

The restart timer enforces the duration between each restart of the system. When the restart
timer is due, a reset signal is issued and is intended to trigger a reset for the host system. The
secure execution interval timer is activated when a reset signal is issued (i.e., right after the restart
timer is due). The secure execution interval is designed for the host system to run security checks to
determine the system’s security level and to configure the next restart time. Once the system exits
the secure execution interval (either the secure execution interval timer is due or the host actively
tells the RoT module to exit the interval), the secure execution interval timer is terminated and
the restart timer is activated. The control flow that runs in the RoT module is shown in Figure 3
and Figure 4.
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Figure 3: Flow chart of the RoT timer (1st part).

Figure 4: Flow chart of the RoT timer (2nd part).

3 Main Controller Platform

3.1 Zedboard

A Zedboard [2] is used as an application platform in this implementation. It includes a XC7Z020
SoC, 512MB DDR3 memory and an on-board 256MB QSPI Flash. The XC7Z020 SoC consists
of a processing system (PS) with dual ARM Cortex-A9 cores and a 7-series programmable logic
(PL). The processing system runs at 667MHz. Note that only one ARM core is used in our
implementation. The programmable logic is programmed to connect Zedboard’s basic functions
(i.e., LEDs, switches, buttons). Figure 6 shows the circuit design in the programmable logic.

3.2 Boot Options

There are several boot options available on Zedboard: (i) boot via JTAG, (ii) boot via on-board
flash and (iii) boot via external SD card. The boot mode can be configured by adjusting the
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Figure 5: Top and bottom view of Zedboard. The JE1 header is used to connect RoT module via
I2C interface.

Figure 6: Programmable logic design in Zynq-7000 CPU on Zedboard.

positions of the jumpers on Zedboard as shown in Figure 7.

Figure 7: Boot options on Zedboard.

For an efficiency reason, we choose to boot the system via on-board flash. This option yields
the fastest boot time among the three. A boot time measurement is given in §5.

3.3 SEI Task and Operating System

The main controller runs FreeRTOS [1], a preemptive real-time operating system, for both SEI
tasks and application tasks. During SEI, only SEI tasks are created and executed when FreeRTOS
starts. The SEI tasks set the next restart time to RoT module via I2C interface. When SEI ends,
the SEI tasks are terminated and the application tasks are created.
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4 Interfacing Host Platform and RoT Timer

4.1 I2C Interface

As we have introduced earlier, RoT timer provides I2C for a host to configure its timer. In this
case, Zedboard acts as a I2C master while RoT timer acts as a I2C slave. On Zedboard, ARM
CPU’s MIO14 and MIO15 are configured as SCL and SDA for I2C respectively. As shown in
Figure 8, ARM CPU’s MIO14 and MIO15 are available on Zedboard as JE9 and JE10. There-
fore, Zedboard’s JE9 is connected to MSP430G2452’s P1.6 and Zedboard’s JE10 is connected to
MSP430G2452’s P1.7.

Figure 8: MIO14 and MIO15 pin locations on Zedboard.

To make I2C interface work properly, a pull-up resistor is required on both SDA and SCL pins.
Here, we use internal 3.3V pull-ups provided by the ARM core on MIO14 and MIO15. Figure 9
shows the pull-up configurations for MIO14 and MIO15 in Vivado.

Figure 9: Configuration details for MIO14 and MIO15 in Vivado. The internal pull-ups for MIO14
and MIO15 are enabled.

4.2 Reset Signal

The main issue we have when connecting the reset output from the RoT module to Zedboard is
the inconsistency of the I/O voltage. On Zedboard, the reset input uses 1.8V which is lower than
RoT module’s output voltage 3.3V. To avoid any damage caused by the voltage surcharge, a level
shifter that converts 3.3V signal from RoT module to 1.8V signal for Zedboard is necessary. We
use a BSS138, a N-channel logic level enhancement mode field effect transistor, to build a 3.3V to
1.8V level shifter (this is a bidirectional level shifter). Figure 10 shows the circuit design of the
level shifter and Figure 11 shows the captured waveform of the reset signals on both 1.8V and 3.3V
sides.

5 System Restart

The restart procedure activates by sending out a low state signal from RoT to Zedbaord. Upon
restart, several things happen:

1. RoT triggers the reset pin. A complete reset signal include pulling the reset signal from high
to low and then release it from low to high.

2. Zedboard is reset. Both PS and PL in the XC7Z020 SoC are reset. Note that, upon reset,
the image for PL is cleared.
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Figure 10: Converting 3.3V output signal from RoT module to 1.8V signal for Zedboard’s reset
input.

Figure 11: Waveform of the reset signals on RoT side and Zedboard side.

3. XC7Z020 loads a bootloader from the on-board Flash via QSPI to PS (it is configurable as
described in §3.2).

4. The bootloader then loads an image from the on-board Flash to program PL. Note that
configuring PL is necessary for PS to run correctly for following applications.

5. Once PL is ready, the bootloader loads the application image from the on-board Flash. The
control of PS is handed to the loaded image once the loading is done.

From an experiment on the implemented system, the restart time (booting from the on-board
QSPI Flash) measures 390ms as shown in Figure 12. As a side note, the restart time for booting
from an external SD card (mentioned in §3.2) measures 680ms.

6 Demonstrative Application

In this section, we describe the use of restart-based framework under a more realistic configuration.
Note that we leave the detail of the methodology in the main paper. We only focus on the
implementation in this report.

6.1 3DOF Helicopter

3DOF helicopter (displayed in figure 13) is a simplified helicopter model, ideally suited to test
intermediate to advanced control concepts and theories relevant to real-world applications of flight
dynamics and control in the tandem rotor helicopters, or any device with similar dynamics [3].
It is equipped with two motors that can generate force in the upward and downward direction,
according to the given actuation voltage. It also has three sensors to measure elevation, pitch and
travel angle as shown in Figure 13. We use the linear model of this system obtained from the
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Figure 12: Measurement of the reboot time via on-board flash. It measures 390ms, from the
triggering of the reset signal to the first executed instruction.

manufacturer manual [3] for constructing the safety controller and calculating the reachable set in
runtime.

Elevation
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Figure 13: 3 Degree of freedom (3DOF) helicopter.

6.2 Interfacing 3DOF Helicopter and Zedboard

The main controller unit interfaces with the 3DOF helicopter through a PCIe-based Q8 High-
Performance H.I.L. Control and data acquisition unit [4] and an intermediate Linux-based PC.
The PC communicates with the ZedBoard through the serial port. At every control cycle, a task
on the controller communicates with the PC to receive the sensor readings (elevation, pitch, and
travel angles) and send the motors’ voltages. The PC uses a custom Linux driver to send the
voltages to the 3DOF helicopter motors and reads the sensor values.

6.3 Main Controller Design

6.3.1 SEI Tasks

Immediately after the reboot, SafetyController and FindRestartTime tasks are created and
executed when the FreeRTOS starts. SafetyController is a periodic task with a period of 20ms.
It implements a simple 3DOF flight control function that keeps the flight in a safe state during
SEI. And, FindRestartTime is a single task that returns before the end of SEI. Length of the SEI
is set to 30ms. FindRestartTime task is executed in a loop, and it only breaks out when a positive
restart time is found. At this point, the restart time is sent to the RoT module via I2C interface,
SafetyController and FindRestartTime tasks are terminated and the main control application
tasks are created.
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6.3.2 3DOF Tasks

A periodic task is used to control 3DOF. The task implements a ComplexController with PID
algorithm that controls 3DOF. It is similar to the controller used in SafetyController except
that ComplexController controls 3DOF to make it move toward the configured set points.
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