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Abstract—Physical plants that form the core of the Cyber-Physical Systems (CPS) often have stringent safety requirements and,
recent attacks have shown that cyber intrusions can cause damage to these plant. In this paper, we demonstrate how to ensure the
safety of the physical plant even when the platform is compromised. We leverage the fact that due to physical inertia, an adversary
cannot destabilize the plant (even with complete control over the software) instantaneously. In fact, it often takes finite (even
considerable time). This work provides the analytical framework that utilizes this property to compute safe operational windows in
run-time during which the safety of the plant is guaranteed. To ensure the correctness of the computations in runtime, we discuss two
approaches to ensure the integrity of these computations in an untrusted environment; (i) full platform-wide restarts coupled with a
root-of-trust timer and (ii) utilizing Trusted Execution Environment (TEE) features available in hardware. We demonstrate our approach
using two realistic systems – a 3 degree-of-freedom helicopter and a simulated warehouse temperature management unit and show
that our system is robust against multiple emulated attacks – essentially the attackers are not able to compromise the safety of the
CPS.

Index Terms—Cyber-Physical Systems, safety-critical systems, security, real-time systems, embedded systems.
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1 INTRODUCTION

Some of the recent attacks on cyber-physical systems (CPS)
are focused on causing physical damage to the plants.
Such intruders make their way into the system using cyber
exploits but then initiate actions that can destabilize and
even damage the underlying (physical) systems. Examples
of such attacks on medical pacemakers [22], or vehicular
controllers [25] exist in the literature. Any damage to such
physical systems can be catastrophic – to the systems, the
environment or even humans. The drive towards remote
monitoring/control (often via the Internet) only exacerbates
the safety-related security problems in such devices.

When it comes to security, many techniques focus on
preventing the software platform from being compromised
or detecting the malicious behavior as soon as possible
and taking recovery actions. Unfortunately, there are always
unforeseen vulnerabilities that enable intruders to bypass
the security mechanisms and gain administrative access
to the controllers. Once an attacker gains such access, all
bets are off with regards to the safety of the physical
subsystem. For instance, the control program can be
prevented from running, either entirely or even in a timely
manner, sensor readings can be blocked or tampered with,
and false values forwarded to the control program and
similarly actuation commands going out to the plants can
be intercepted/tampered with, system state data can be
manipulated, etc. These actions, either individually or in
conjunction with each other, can result in significant damage
to the plant(s). At the very least, they will significantly
hamper the operation of the system and prevent it from
making progress towards its intended task.

In this paper, we develop analytical methods that can
formally guarantee the baseline safety of the physical plant even
when the controller unit’s software has been entirely compromised.

Significant parts of this work have been published earlier in the proceedings of
the 9th ACM/IEEE International Conference on Cyber-Physical Systems (IC-
CPS’18) with DOI: 10.1109/ICCPS.2018.00010 [3].

The main idea of our paper is to carry out consecutive
evaluations of physical safety conditions, inside secure
execution intervals, separated in time such that an attacker
with full control will not have enough time to destabilize
or crash the physical plant in between two consecutive
intervals. We refer to these intervals by Secure Execution
Interval (SEI). In this paper, the time between consecutive
SEIs is dynamically calculated in real time, based on the
mathematical model of the physical plant and its current
state. The key to providing such formal guarantees is to
make sure that each SEI takes places before an attacker can
cause any physical damage.

To further clarify the approach, consider a simplified
drone example. The base-line safety for a drone is to not
crash into the ground. Using a mathematical model of the
drone, we demonstrate, in Section 4.2, how to calculate
the shortest time that an adversary with full control over
all the actuators would need to take the drone into zero
altitudes (an unsafe state) from its current state (i.e., current
velocity and height). The key is, once inside the SEI, to
schedule the starting point of the upcoming SEI before the
shortest possible time to reach the ground. During the
SEI, depending on whether the drone was compromised or
not, it will be either stabilized and recovered or, it will be
allowed to resume its normal operation. With this design in
place, despite a potentially compromised control software,
the drone will remain above the ground (safe).

Providing formal safety guarantees, even for the simple
example above is non-trivial and challenging. As an
example, an approach is needed to compute the shortest
time to reach the ground in run-time. Each SEI must be
scheduled to take place at a state that not only is safe (before
hitting the ground), but also the controller can still stabilize
the drone from that velocity and altitude, before it hits the
ground, considering the limits of drone motors. Mechanisms
are needed to prevent attackers from interfering with the
SEIs in any way possible. In this paper, we address all the
challenges required to provide safety.
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One of the primary technical necessities for the pro-
posed design is a trusted execution environment where
the integrity of the executed code can be trusted. In this
paper, we utilize two different approaches to achieve this
goal; (i) restart-based implementation which utilizes full sys-
tem restarts and software reloads (ii) TEE-based implemen-
tation which utilizes Trusted Execution Environment (TEE)
such as ARM TrustZone [43] or Intel’s Trusted Execution
Technology (TXT) [24] that are available in some hardware
platforms.

Under the restart-based implementation, control plat-
form is restarted in each cycle, and the uncompromised
image of the controller software is reloaded from read-only
storage. Restarting the platform enables us to (i) eliminate
all the possible transformations carried out by the adversary
during previous execution cycle1 and also (ii) provides a
window for trusted computation in an untrusted environ-
ment which we use to compute the next SEI triggering
time (Section 4.1). This design utilizes an external HW timer
to trigger the restart at the scheduled times. This simple
design prevents the adversary from interfering with the
scheduled restarting event.

Another alternative approach that is introduced in this
paper to enable the SEIs is to the use TEE features
that are available in HW platforms. In particular, we
use ARM TrustZone [43] and LTZVisor [28] which is a
hypervisor based on TrustZone (Section 5.1). The TEE-
assisted implementation does not require the platform to
be restarted in every SEI cycle. Thus, there is no restarting
overhead, and additionally, the controller state is not lost in
every SEI cycle. This design can significantly improve the
applicability of our method to physical plants with faster
dynamics. As we have shown in the evaluation section, the
maneuverability region of the 3DOF plant is increased by
234 percent when the controller is implemented by the TEE-
based method.

For some CPS applications, one of the above implemen-
tation options might be a more suitable choice than the other
one. If the physical plant has high-speed dynamics – relative
to the restart time of the platform – or if the past state of
the controller is necessary to carry out the mission – e.g., au-
thentication with ground control – the TEE-based option the
reasonable choice. On the other hand, restart-based imple-
mentation is feasible for low-cost micro-controllers whereas
platforms equipped with TEE are generally more expensive.
Furthermore, many of the CPS applications have physical
plants with slow physical dynamics – compared to the
restart time of their embedded platform – and the restart-
based implementation will perform just as good as the TEE-
based implementation (as we will show in Section 6.4). For
such cases, restart-based implementation is a better choice,
and TEE-assisted implementation might only unnecessarily
increase the cost and complexity of the system.

In summary, the contributions of the work are:
1) We introduce a design method for embedded control

platforms with formal guarantees on the base-line safety of

1. It is possible that the adversary launches a new instance of the
attack after a restart. Yet, the plant is protected against each attack
instance and malicious states are not carried across restarts. As a result,
the proposed approach is able to prevent the attacker from damaging
the system every time and guarantees safety of the entire system.

the physical subsystemwhen the software is under attack.
2) We propose a restart-based design implementation

that enables trusted computation in an untrusted
environment using platform restarts and common-off-
the-shelf (COTS) components, without requiring chip
customizations or specific hardware features.

3) We propose an alternative design implementation using
TEE features that eliminates the restarting overhead
and enables the core safety-guarantees to be provided
on more challenging physical plants.

4) We have implemented and tested our approach against
attacks through a prototype implementation for a
realistic physical plant and a hardware-in-the-loop
simulation. We compare both design implementation
options and illustrate their use cases.
Significant parts of this work have been published in an

earlier conference paper [3]. The critical improvement upon
earlier results here is the use of TrustZone to implement
secure execution intervals that eliminates the overhead of
system-reboots and improves the maneuverable are of the
3DoF helicopter by 234 percent. We have also performed all
the experiments to evaluate the new aspects of the approach.

2 APPLICATIONS, THREATS AND ADVERSARIES

This paper focuses on end-point devices that control and
drive a safety-critical physical plant i.e., the plant has
safety conditions that need to be respected at all times.
Components such as sensing nodes that do not directly
control a physical plant are not in the scope of this paper.
Safety requirements of the plant are defined as an admissible
region in a connected subset of the state space. If the
physical plant reaches the states outside of the admissible
region, it could damage itself as well as the surrounding
environment. Thus, to preserve the physical safety, the plant
must only operate within the admissible region.

2.1 Adversary and Threat Model

Embedded controllers of CPS face threats in various forms
depending on the system and the goals of the attacker. The
particular attacks that we aim to thwart in this paper are
those that target damaging the physical plant. In this paper,
we assume attackers require an external interface such as
the network, the serial port or the debugging interface to
intrude into the platform. We assume that the attackers do
not have physical access to the platform. Once a system
is breached, we assume the attacker has full control (root
access) over the software (non-secure world), actuators, and
peripherals.

The following assumptions are made about the platform
and the adversary’s capabilities:
i) Integrity of original software image: We assume that

the original images of the system software i.e., real-
time operating system (RTOS), control applications, and
other components are not malicious. These components,
however, may contain security vulnerabilities that could
be exploited to initiate attacks.

ii) Read-only storage for the original software image: We
assume that the original trusted image of the system
software is stored on a read-only memory unit (e.g.,
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E2PROM). This content is not modifiable at runtime
by anyone including adversary. Updating this image
requires physical access and is completed off-line when
the system is not operating2.

iii) Trusted Execution Environment (TEE): Hardware-assisted
TEEs such as TrustZone partition the platform into a
secure world and a non-secure world. Resources (i.e.,
code and data) in the secure world are isolated from
the non-secure world and are only accessible by the
software running in the secure world. A compromise
in the non-secure world may not affect the execution
and data in the secure world. In this paper, we assume
that the software in the secure world is trusted from
the beginning and may not be compromised (in our
design, the secure world only interacts with sensors and
actuators and does not have an exposed interface that
can be a point of exploitation).

iv) Immediately after a reboot, as long as the external
interfaces of the device (i.e., network, debugging
interface) remain disabled3, software running on the
platform is assumed to be uncorrupted.

v) Integrity of Root of Trust (RoT): RoT – which is only
necessary for the restart-based implementation – is
an isolated hardware timer responsible for issuing
the restart signal at designated times. As shown in
Section 4.1, it is designed to be programmable only once
in each execution cycle and only during an interval that
we call the SEI.
Additionally, we assume that the system is not suscep-

tible to external sensor spoofing or jamming attacks (e.g.,
broadcasting incorrect GPS signals, electromagnetic interfer-
ence on sensors etc.). An attacker may, however, spoof the
sensor readings within the OS or applications. Our approach
does not protect from data leak related attacks such as
those which aim to steal secrets, monitor the activities, or
violate the privacy. Our design does not protect from net-
work attacks such as man-in-the-middle or denial-of-service
attacks that restrict the network access. An attacker may
enter the system via any external interface (e.g., a telemetry
channel, a network interface) and use known vulnerabilities
such as buffer overflow or code injection to manipulate the
system. However, as we show, the physical plant remains
safe during such attacks.

3 BACKGROUND

In this section, we provide a brief background on Safety
Controller and Real-Time reachability. We will utilize these
tools in the rest of this paper. Before going into their details,
we first present some useful definitions.

Definition 1. Admissible and Inadmissible States: States that do
not violate any of the operational constraints of the physical plant
are referred to as admissible states and denoted by S . Likewise,

2. This is common for many safety-critical IoT systems such as
medical devices and some components in automotive systems – to
prevent from runtime malfunctioning due to unwanted firmware
corruption at the time of update and well as to prevent the adversary
from tampering with the system’s image remotely)
3. This is achieved by not initiating a socket connection, not

reading/writing from/to any of the ports and not performing any of
the hand shaking steps.

those states that do violate the constraints are referred to as
inadmissible states and denoted by S ′.

Definition 2. Recoverable states: are defined with regards to a
given Safety Controller (SC) and denoted by R. R is a subset of
S such that if the given SC starts controlling the plant from the
state x ∈ R, all future states will remain admissible.

In other words, the physical plant is considered momen-
tarily safe when the state is in S . Moreover, SC can stabilize
the physical plant, if its state is in R. Operational limits and
safety constraints of the physical system dictate what S is
and it is outside of our control. However, R is determined
by the design of the safety controller. Ideally, we would want
a SC that can stabilize the system from all the admissible
states S . However, it is not usually possible.

In the following, one possible way to design a safety
controller is discussed. This method is based on solving
linear matrix inequalities and has been used in the design
of systems as complicated as automated landing maneuvers
for an F-16 [33].

3.1 Safety Controller

According to this design approach [33], [34], SC is designed
by approximating the system with linear dynamics in the
form of ẋ = Ax + Bu, for state vector x and input vector
u. In addition, the safety constraints of the physical system are
expressed as linear constraints in the form of H · x ≤ h where
H and h are constant matrix and vector. Consequently, the
set of admissible states are S = {x : H · x ≤ h}. The choice
of linear constraints to represent S is based on the Simplex
Architecture and many of the following works [6], [10], [11],
[33], [34], [35].

In this approach, the operational safety constraints,
as well as actuator saturation limits, are expressed as
linear constraints in an LMI. These constraints, along with
linear dynamics for the system are input into a convex
optimization problem that produce both linear proportional
controller gains K as well as a positive-definite matrix
P . The resulting linear-state feedback controller, u = Kx,
yields closed-loop dynamics in the form of ẋ = (A+BK)x.
Given a state x, when the input u = Kx is used, the P
matrix defines a Lyapunov potential function, V = xTPx,
such that: V > 0, V̇ < 0, and V = 0 if and only if
x = 0, thus guaranteeing stability of the linear system using
Lyapunov’s direct or indirect methods. Furthermore, the
matrix P is constructed by the method such that it defines
an ellipsoid in the state space where all the constraints are
satisfied when xTPx < 1. Since the states where saturation
occurs were provided as input constraints to the method,
this means that states inside the ellipsoid result in control
commands that are not beyond the actuator limits (where
saturation would occur). States that are in S but not in
xTPx < 1 ellipsoid, may result in control commands that
are beyond the actuator limits. It follows that the states
which satisfy xTPx < 1 are a subset of the safety region.
Because the potential function is strictly decreasing over
time, any trajectory starting inside the region xTPx < 1
will remain there for an infinite time window. As a result,
no inadmissible states will be reached. Hence, the linear-
state feedback controller u = Kx is the SC and R = {x :
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xTPx < 1} is the recoverable region. Designing SC in such a
way ensures that the physical system would always remain
safe [35].

Note: Safety Controller is only capable of keeping plant
safe and does not push it towards its goal/mission. A
meaningful system, therefore, cannot run under SC at
all times and requires another mission controller to make
progress.

3.2 Real-Time Reachability

For runtime computation of reachable states of a plant
within a future time, we utilize a real-time reachability
tool that is introduced in [11]. This low-cost algorithm
is specifically designed for embedded systems with real-time
constraints and low computation power.

Note that constructing a safety controller similar to that
specified in section 3.1 (e.g., having a recoverable region
where any trajectory starting from that region will stay
within that region) is generally not possible for non-linear
systems. However, for specific classes of non-linear systems,
our approach will be applicable if: (i) a safety controller with
the properties mentioned above can be constructed and (ii)
we can define a function that returns the minimum and
maximum derivative in each dimension given an arbitrary
box in the state space. This technique can also handle
hybrid systems where the state invariants are disjoint and
cover the continuous state Rn, there are no reset maps
in the transitions between discrete states and the state
invariants define the guards of incoming transitions. In
these piecewise systems, the state of the hybrid automaton
can be determined solely by the continuous state; although
separate differential equations can be used in various
parts of the state space. This algorithm requires that the
derivatives are defined in the entire state space and that
they are bounded.

This technique uses the mathematical model of the
dynamics of the plant and a n-dimensional box to represent
the set of possible control inputs and the reachable states.
A set of neighborhoods, N [i] are constructed around each
facei of the tracked states with an initial width. Next,
the maximum derivative in the outward direction, dmax

i ,
inside each N [i] is computed. Then, crossing time t

crossing
i =

width(N [i])/dmax
i is computed over all neighborhoods and

the minimum of all the tcrossingi is chosen as time to advance,
ta. Finally, every face is advanced to facei + dmax

i × ta.
For further details on inward neighborhood versus outward
neighborhoods, and the choosing of neighborhood widths
and time steps refer to [11]. In this algorithm a parameter
called reach-time-step is used to control neighborhood
widths. This parameter lets us tune the total number of steps
used in the method, and therefore alter the total runtime to
compute the reachable set. This allows us to cap the total
computation time of the reachable set – which is essential in
any real-time setting.

Moreover, authors have demonstrated that this algo-
rithm is capable of producing useful results within very
short computation times e.g., result achieved with compu-
tation times as low as 5ms using embedded platforms [11].
All these features make this approach a suitable tool for our
target platforms as well.

4 METHODOLOGY

To explain our approach, let us assume that it is possible to
create secure execution intervals (SEI) during which we can
trust that the system is going to execute uncompromised
software and adversary cannot interfere with this execution
in any way. Under such assumption, we will show that
it is possible to guarantee that a physical plant will
remain within its admissible states as long as the following
conditions remain true: (i) the timing between these
intervals are separated such that, due to the physical inertia,
the plant will not reach an inadmissible state until the
beginning of the consequent SEI. (ii) The state of the plant
at the beginning of the following SEI will be such that the
SC can still stabilize the system. Under these conditions, the
plant will be safe in between two SEIs (due to condition 1).
If an adversary pushes the system close to the boundaries of
inadmissible states, during the following SEI, we can switch
to SC, and it can stabilize the plant (condition 2).

In the rest of this section, we present an analytical
framework that shows how appropriately timed separations
between the consequent SEIs guarantee the physical safety.
Additionally, we show how these time values can be
calculated in run-time. Finally, we discuss two different
mechanisms – restart-based implementation and TEE-
assisted implementation – to enable a trusted computation
environment – SEI – during which the time intervals
between SEI will be computed, without any adversarial
interference.

4.1 Restart-based Secure Execution Intervals (SEI)

One essential element of the approach introduced in this
paper is the run-time computation of the time separation
between consecutive executions of the safety-critical tasks –
the tasks that evaluate the safety conditions (next section)
and stabilize the plant if necessary. The ultimate safety
guarantees of our approach depend on the integrity of these
computations. To achieve safety, therefore, it is essential
to have a means to completely protect these tasks from
any adversarial interference – adversary should not be able
to stop or delay the execution or, corrupt the results of
the computations. In this paper, we use the term Secure
Execution Interval (SEI) to refer to execution intervals
during which the integrity of the code is preserved.

One way to create SEIs in an untrusted environment is
to rely on the full platform restarts and the software reloads.
The procedure is as follows. For each SEI, the platform
needs to restart entirely and then immediately load the clean
software image from the read-only storage. Additionally,
after the restart, all the external interfaces of the platform
– those that might be an exploitation point for external
adversaries – will remain disabled. As soon the platform
boots, it can execute the safety-related tasks trustworthily
and produce correct results. Once the execution of the
critical tasks is finished, the time to trigger the following
restart – the next SEI – is scheduled. Finally, the SEI ends, the
external interfaces are activated, and the mission controller
and other necessary components are launched.

An additional mechanism is necessary to schedule a
restart and trigger it such that the adversary cannot prevent
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Fig. 1: An example sequence of events for the restart-based implementation of the SEI. White: mission controller is in charge and
platform is not compromised. Yellow: system is undergoing a restart. Green: SEI is active, SC and find_safety_window are
running in parallel. Orange: adversary is in charge. Blue: RoT accepts new restart time. Gray: RoT does not accept new restart
time. Red arrow: RoT triggers a restart. Blue arrow: SEI ends, the next restart time is scheduled in RoT, and the mission controller
starts.

it. We designate a separate HW module, called root-of-
trust (RoT) to do this. RoT is essentially an external timer
that can send a restart signal to the HW restart pin of
the controller board at the scheduled time. It has an
interface that allows the main controller to set the time
of the next restart signal. We refer to this interface by
set_SEI_trigger_time. The only difference of RoT with
a regular timer is that it allows the processor to call the
set_SEI_trigger_time interface only once after each
restart and ignores any additional calls to this interface
until the timer expires. Once the RoT timer is configured,
adversaries cannot disable it until it has expired and the
platform is restarted. Figure 1 illustrates the sequence of
events in the system.

4.2 Finding the Safety Window in Run-Time
During the SEI, platform executes two tasks in parallel:
(i) find_safety_window task which calculates the time
window in which the plant will remain safe due to its
physical inertia and uses this result to set the triggering time
of the next SEI. And, (ii) SC that keeps the plant stable while
find_safety_window is computing. Figure 1 presents an
example sequence of the system events. If no malicious
activity had taken place during the previous execution
cycle (first cycle of Figure 1), the next SEI triggering
time is computed and scheduled quickly, and the mission
controller resumes. However, if an attacker had been able
to compromise the platform within the previous cycle
and managed to push the plant close to the inadmissible
states (second cycle of Figure 1), the SC will need some time
to stabilize the plant – push it further into the recoverable
region – and SEI will be longer.

The fundamental idea here is how should
find_safety_window calculate the triggering time
of the next SEI such that up to the beginning of the next
SEI, the physical plant would not be able to reach an unsafe
state and at the beginning of next SEI, the state would still
be recoverable by the SC. The rest of this subsection answers
this question.

Before we proceed, it is useful to define some notations.
We use the notation of Reach=T (x,C) to denote the set of
states that are reachable by the physical plant from an initial
set of states x after exactly T units of time have elapsed
under the controller C . Reach≤T (x,C) can be defined as∪T

t=0 Reach=t(x,C) i.e., union of all the states reachable
within all times t up to T time units. Also, we use SC to
refer to the safety controller and UC to refer to an untrusted

controller, i.e., one that might have been compromised by
an adversary. We use notation ∆(x1, x2) to represent the
shortest time required for the physical plant to reach state
x2, starting from x1.

Definition 3. True Recoverable states are all the states from
which the given SC can eventually stabilize the plant. For-
mally, T = {x | ∃α > 0 : Reach≤α(x, SC) ⊆
S & Reach=α(x, SC) ⊆ R}. The set of true recoverable states
is represented with T .

Definition 4. Tα denotes the set of states from which the given
SC can stabilize the plant within at most α time. Formally, we
have Tα = {x | Reach≤α(x, SC) ⊆ S & Reach=α(x, SC) ⊆
R}. From definition it follows that ∀α : Tα ⊆ T .

Let us call Ts, the switching time, and use it for referring
to the time between the triggering time of the SEI until SEI
is active and ready to execute tasks. For the restart-based
SEI implementation, Ts is equal to the length of one restart
cycle of the embedded platform4. Furthermore, let us use
γ to represent the shortest time that is possible to take a
physical system from its current state x(t) ∈ T to a state
outside of T . We can write

γ(x) = min {∆(x, x′) | for all x′ ̸∈ T } (1)

It follows that

If x(t) ∈ T then x(t+ τ) ∈ T where τ < γ(x(t)). (2)

From Equation 2 we can conclude

Reach≤γ(x(t))−ϵ(x(t), UC) ⊆ S
Reach=γ(x(t))−ϵ(x(t), UC) ⊆ T

where ϵ → 0 (3)

Equation 3 indicates that if it was possible to calculate
γ(x(t)) in an SEI, we could have scheduled the consecutive
SEI to be triggered at time t+γ−Ts− ϵ. This process would
have ensured that by the time the following SEI had started,
the state of the plant was truly recoverable and admissible.

The value of γ(x) depends on the dynamics of the plant
and the limits of the actuators. Unfortunately, it is not
usually possible to compute a closed-form representation
for γ(x). Because computing a closed-form representation
for the T of the given SC is not a trivial problem. Actuator
limits is another factor that needs to be taken into account
in the calculation of T . Therefore, in many cases, finding γ

4. Ts is the length of the interval from the triggering point of
restart until the reboot is completed, filters are initialized and control
application is ready to control the plant.
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would require performing extensive simulations or solving
numerical or differential equations.

An alternative approach is to check the conditions of
Equation 3 for a specific value of time, λ:

Reach≤λ(x(t), UC) ⊆ S & Reach=λ(x(t), UC) ⊆ Tα (4)

Fortunately, having a tool to compute the reachable
set of states in run-time allows us to evaluate all the
components of Equation (4). Real-time reachability can
compute the reachable set of states up to the λ time with
an untrusted controller UC to check the first part of the
equation (4). To evaluate the second part, we use the
calculated reachable set at time λ as the starting set of states
to perform another reachability computation for α time
under SC and check Reach≤α(Reach=λ(x(t), UC), SC) ⊆ S
and Reach=α(Reach=λ(x(t), UC), SC) ⊆ R. These two
conditions are equivalent to the second part of the equation
above.

The λ that is calculated for the state x(t) is a safety window
of the physical system in state x(t), that is the interval of
time, starting from time t, that the plant will remain safe
and recoverable, even if the adversary controls it. Hence,
we can conclude that the time t + λ − Ts, is a point where
the platform can be safely restarted – i.e., the next SEI can be
triggered. Algorithm 1, performs a binary search and tries to
find the largest safety window of the plant from a given x(t)
within a bounded computation time, Tsearch. Given a large
Tsearch, Algorithm 1 would calculate the the maximum safety
window of the plant for that state. In run-time, however,
Tsearch has to be limited and therefore choosing the initial
candidate λcandidate is crucial. It is also possible to use an
adaptive λinit by dividing the state space into subregions
and assigning a λinit to each region. At runtime, choose the
λinit associated with the state and initialize the Algorithm 1.

Algorithm 1: Finding physical safety window from state x. Here, Teq-4

refers to the time required to evaluate the conditions if Equation 4.
We can compute the exact value of Teq-4 because the reachability
computation time is capped (one of the imporant features of [11]) and,
in total, there are 4 Reach operations to be performed.

find_safety_window(x, λinit)
1: startTime := currentTime()
2: λcandidate := λinit
3: RangeStart := Ts; RangeEnd := λcandidate
4: while currentTime() - startTime <Tsearch − Teq-4 do
5: if conditions of Equation (4) are true for λcandidate then
6: λsafe := λcandidate
7: RangeStart := λsafe; RangeEnd := 2λsafe
8: else
9: RangeEnd := λcandidate
10: end if
11: λcandidate := (RangeStart+ RangeEnd)/2
12: end while
13: return -1

Note that the real actions of the adversary are unknown
ahead of the time. As a result, in the conditions of
Equation (4), the reachability of the plant under all possible
control values need to be calculated. Consequently, the
computed reachable set under UC (Reach(x,UC)) is the
largest set of states that might be reached from the
given initial state, within the specified time. The real-time
reachability tool in [11] allows this sort of computation due

to the usage of a box representation for control inputs.
Control inputs are set to the full range available to the
actuators. As a result, the computed set the states that might
be achieved under all of the actuator values. Notice that this
procedure does not impact the time required for reachability
computation.

When an intelligent adversary compromises the system,
it can quickly push the plant towards the inadmissible
states and very close to the boundary of the unsafe region.
When operating close to the inadmissible states, there is a
very narrow margin for misbehavior. If the adversary takes
over again, they can violate the physical safety. Therefore,
when SEI starts and the plant is in states very close to the
boundary of the unsafe region, safety controller would need
to execute for longer than usual until the plant is sufficiently
pushed into the safe area. Deciding on how long the SC
needs to run automatically happens based on the result
of find_safety_window as presented in Algorithm 2.
If the plant’s state is too close to the boundary of the
unrecoverable region, the safety window of the plant will
be very short, and find_safety_window will most likely
return -1. In Algorithm 2, this will force the while loop
and consequently the SC to continue running for another
cycle. This cycle will continue until SC has sufficiently
distanced the plant from the unsafe region. At this point,
find_safety_window will be able to compute a safety
window and the SEI will end.

It’s worth noting that what real-time reachability yields
is a superset of the actual reachable set of states. Therefore,
the calculated λ ensures that the system always remains
within the safe region.

Algorithm 2: One operation cycle with restart-based SEI

1: Start Safety Controller. /* SEI begins */
2: λsafe = λinit /*Initializing the safety window*/
3: repeat
4: start_time := systemTime()
5: x := obtain the most recent state of the system from Sensors
6: λsafe :=find_safety_window(x, λsafe)
7: elapsed_time := systemTime() - start_time
8: until λsafe ̸= −1 and λsafe > Ts + elapsed_time
9: Send λsafe − elapsed_time− Ts to RoT. /* Set the next restart

time. */
10: Activate external interfaces. /* SEI ends. */
11: Terminate SC and launch the mission controller.
12: When RoT sends the restart signal to hardware restart pin:
13: Restart the platform
14: Repeats the procedure from beginning (from Line 1)

5 TEE-ASSISTED DESIGN IMPLEMENTATION

The restart-based approach to enable SEIs requires a restart
in each operation cycle and imposes two main types of
overheads on the system: (i) restart-time and (ii) memory
erasure due to the restarts. Implementing this approach on
some CPSs can be challenging especially if the platform
restart time is not negligible compared to the speed of
the dynamics of the plant. Another issue with this design
implementation arises from the fact that the system restarts
erase the platform memory. For some applications, such
frequent memory erasures can be problematic. For instance,
to establish a remote connection, the controller might need
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to perform handshaking steps and store the state in the
memory. If the system is frequently restarted, the controller
may not be able to establish a reliable communication.

To mitigate some of these issues, we propose an
alternative implementation where we use ARM TrustZone
technology [43] and in particular LTZVisor [28] – which is
a lightweight TrustZone assisted hypervisor with real-time
features for embedded systems5. Here, instead of relying
on the platform restarts to create SEIs, we exploit the
isolated execution environments that are attainable through
TrustZone.

In the rest of this section, we present some background
on TrustZone and LTZVisor, and then we discuss the
implementation of the approach.

5.1 Background on TrustZone and LTZVisor

TrustZone [43] hardware architecture can be seen as
a dual-virtual system, partitioning all systems physical
resources into two isolated execution environments. A new
33rd processor bit, the Non-Secure (NS) bit, indicates in
which world the processor is currently executing, and is
propagated over the memory and peripherals buses. An
additional processor mode, the monitor mode, is added to
store the processor state during the world switch. TrustZone
security is extended to the memory infrastructure through
the TrustZone Address Space Controller (TZASC) that can
partition the DRAM into different memory regions. Secure
world applications can access non-secure world memory,
but the reverse is not possible. Additional enhancements in
TrustZone provide the same level of isolation in cache and
system devices.

LTZVisor [28] is a lightweight hypervisor that allows
the consolidation of two virtual machines (VMs), running
each of them in an independent virtual world (secure and
non-secure). It exploits TrustZone features in the platforms
to provide memory segmentation, cache-level isolation,
and device partitioning between the two VMs. LTZVisor
dedicates timers to each VM that enables each one to have a
distinctive notion of system time. Additionally, it provides
an API for communication between the two VMs.

LTZVisor manages the secure and non-secure world
interrupts in a way that meets the requirements of the hard
real-time systems. All the implemented interrupts can be
individually defined as secure and non-secure. If the secure
VM is executing, all the secure interrupts are redirected to
it without hypervisor interference. If a non-secure interrupt
arises during secure VM execution, it will be queued and
processed as soon as non-secure side becomes active. On the
other hand, if the non-secure VM is executing and a secure
interrupt arises, it will be immediately handled in the secure
world. This design prevents a denial-of-service attack on the
secure-side applications.

LTZVisor implements a scheduling policy that guaran-
tees that the non-secure guest OS is only scheduled during
the idle periods of the secure guest OS, and the secure
guest OS can preempt the execution of the non-secure one.

5. In this paper, we have used TrustZone and LTZVisor. Nevertheless,
other available Trusted Execution Environment (TEE) technologies such
as Intel’s Trusted Execution Technology (TXT) [24] can be employed to
achieve the same goal.

This scheduling policy resolves one of the well-known real-
time scheduling problems in virtual environments known
as hierarchical scheduling and makes LTZVisor an excellent
choice to meet real-time requirements of the tasks in the
secure VM. Besides, creators of LTZVisor show that the
overhead of switching from secure VM to non-secure VM
and vice versa is small and deterministic [28]. Thus, secure
VM is ideal for running a real-time operating system (RTOS)
whereas, non-secure VM can run general purpose operating
systems like Linux.

5.2 TEE-enabled SEIs

In this design, to protect the SC and find_safety_window
tasks, they execute in the secure VM, and everything
else runs in the non-secure VM. The SC and
find_safety_window are executed, and before they
finish, they schedule their next execution time i.e., the
next SEI. Mission controller and any other component
start running as soon as all the tasks in the secure VM
have yielded. LTZVisor guarantees that the non-secure VM
cannot interfere with the execution of the tasks in the secure
VM.

Each task inside the secure VM, once executed, can
choose to yield and set the future time when its status will
change to ready again. In LTZVisor, the secure VM has a
higher priority than the non-secure VM. Consequently, the
non-secure VM tasks will execute only when there are no
secure tasks that are ready to execute. Similarly, as soon
as one of the secure VM tasks becomes ready, LTZVisor
pauses the non-secure VM, stores the necessary registers
and executes the secure task. The scheduling policy in each
VM determines the priorities and execution details for the
tasks of that VM.

The operation cycle of the system during the SEI is very
much the same as described in Algorithm 2 except instead of
setting the RoT and the restarting step, secure tasks schedule
their next wake up time using the secure platform timer or
the OS of the secure VM. SC and find_safety_window
tasks execute in parallel. As soon as find_safety_window
finds a valid safety window, both tasks set their next wake
up time and yield the execution. At this point, LTZVisor
resumes the execution of the non-secure VM until it is time
for the SC and find_safety_window to wake up.

Note that, due to the isolation provided by TrustZone,
non-secure VM cannot interfere with the execution of secure
tasks when they are ready to execute. This protection
eliminates the need for the RoT timer which was a necessary
component to implement the restart-based SEI.

5.3 Optional Recovery Restart

The safety guarantees that the TEE-based implementation
provides are precisely the same guarantees as restart-based
SEI implementation. Nevertheless, there is a significant
difference. When the system is being restarted in every
cycle, if it gets compromised, the malicious components will
only last until the following restart, and then the software
will be restored. When using TrustZone, if the non-secure
world gets compromised, it will remain compromised.
Although the adversary cannot violate the safety of the
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plant, it can seriously prevent the system from making any
progress.

There are two possible mechanisms to mitigate this
problem. One arrangement is to introduce rare, randomized
restarts into the system6. Another mitigation is to monitor
the platform, during the SEI, for potential intrusions and
malicious activities and restart the platform after the
malicious behavior is detected7. Note that with the optional
recovery restarts described in this section, a well-behaving
system that is not under attack will rarely restart. The
platform will be restarted only after it is deemed malicious
or when the random function requires it to do so. Whereas,
with the restart-based implementation of SEIs, the platform
has to be restarted before every SEI.

Deciding whether the platform needs to restart or not
takes place at the beginning of the SEI – either based on a
randomized policy or a detection mechanism. If it is decided
to restart, the steps to perform the recovery are presented
in Algorithm 3. One crucial point in restarting the system
is the fact that the platform restart must take place only
when the plant is in a state where it will sustain the safety
throughout the restart and will end up in a recoverable state
– according to Defintion 2 – after the restart has completed.
This requirement is satisfied if the conditions of Equation 4
are met.

Under these steps, SC continues to push the plant
towards the center of the safe region. In parallel, the
find_safety_window function is executed in a loop and
checks if the plant at its current state meets the conditions
of safe restarting in Equation 4 for the length of platform
restart time. Once the find_safety_window confirms the
safety conditions for the current plant state, the recovery
restart is initiated. In other words, the system is restarted
when the plant has enough distance from the boundaries of
the recoverable states and unrecoverable states.

Algorithm 3: Steps to perform a recovery restart.
1: SC starts and is periodically invoked in parallel to the next steps.
2: λRecovery = Trestart + Teq-4 + ϵ
3: repeat
4: x := obtain the most recent state of the system from Sensors
5: until conditions of Equation (4) are true for λRecovery
6: (optional) Store sensor reading in the non-volatile storage
7: Restart the system
8: /*Following steps are executed after the restart*/
9: (optional) Load the pre-restart sensor data from storage into the

memory

5.4 Carrying Sensor State Between Restarts

Some control applications might need the prior-to-restart
sensor readings for improved performance or higher quality
output. For instance, low-pass filters use the past sensor

6. The rationale behind randomized system restarts – also known in
the literature as software rejuvenation – is that there are no perfect
intrusion detection mechanisms. Also, there will always exist malicious
activities that will remain undetected. In our previous work [4], we
have analyzed the impact of restart-based recovery on the availability
of a system under attack.
7. In this paper, we do not propose any particular intrusion detection

algorithm. There is a variety of such techniques that the system
architects can choose from.

readings to remove noise from the sensors. TEE-assisted
implementation can accommodate this requirement. In this
design, restarts are always initiated within the secure VM
and, the secure VM is always the first to execute after the
restart. Immediately prior to the restart, the secure VM can
store any data on the non-volatile storage, and load it back
into the memory after the restart. Note that the non-secure
VM is not able to interfere with this process at all.

It is worth mentioning that the above procedure can
be used to carry any values, including the variables or
states in the non-secure VM, and make them available
after the restart. However, we strongly advise avoiding a
design where the CPS relies on the prior-to-restart state
of the non-secure VM to carry out its essential mission
mainly because the platform is restarted only when the non-
secure VM is deemed compromised. At this point, all the
states in the non-secure VM must be assumed corrupted.
Passing the corrupted values across restarts can propagate
the adversarial effect across the restarts and defeat the
purpose of recovery restarts.

6 EVALUATION AND FEASIBILITY STUDY

In this section, we evaluate the protections provided by
our approach and measure the feasibility of implementing
it on real-world CPSs. We choose two physical plants for
this study: a 3-degree of freedom helicopter [29] and a
warehouse temperature management system [39]. For both
plants, the controller is implemented using both restart-
based and TEE-assisted approaches on a ZedBoard [8]
embedded system.

6.1 Test-Bed Description

6.1.1 Warehouse Temperature Management System:
This system consists of a warehouse room with a direct
conditioner (heater and cooler) to the room and another
conditioner in the floor [39]. The safety goal for this plant
is to keep the room temperature, TR, within the range of
[20◦C, 30◦C]. Following equations describe the heat transfer
between the heater and the floor, the floor and the room, and
the room and outside space. The model assumes constant
mass and volume of air and heat transfer only through
conduction.

ṪF = −UF/RAF/R

mFCpF
(TF − TR) +

uH/F

mFCpF

ṪR = −UR/OAR/O

mRCpR
(TR−TO)+

UF/RAF/R

mRCpR
(TF −TR)+

uH/R

mRCpR

Here, TF , TR, and TO are the temperature of the floor,
room and outside.mF andmR are the mass of floor and the
air in the room. uH/F is the heat transferred from the floor
heater to the floor and uH/R is the heat transferred from the
room heater to the room both of which are controlled by
the controller. CpF and CpR are the specific heat capacity
of floor (in this case concrete) and air. UF/R and UR/O

represent the overall heat transfer coefficient between the
floor and room, and room and outside.

For this experiment, the walls are assumed to consist of
three layers; the inner and outer walls are made of oak and
isolated with rock wool in the middle. The floor is assumed
to be quadratic and consists of wood and concrete. The
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parameters used are as following8: UR/O = 539.61 J/hm2K,
UF/R = 49920 J/hm2K, mR = 69.96 kg, mF = 6000 kg,
floor area AF/R = 25 m2, wall and ceiling area AR/O = 48
m2, thickness of rock wool, oak and concrete in the wall
and floor respectively 0.25 m, 0.15 m and 0.1 m. Maximum
heat generation capacity of the room and floor conditioner is
respectively 800 J/s and 115 J/s. And, the maximum cooling
capacity of the room and the floor cooler is −800 J/s and
−115 J/s.

6.1.2 3-Degree of Freedom Helicopter:

Travel

Elevation

Pitch

Main 
Controller

RoT

Restart 
Pin

Voltage
Shifter

Fig. 2: 3DOF helicopter and the ZedBoard controller.

3DOF helicopter (displayed in figure 2) is a simplified
helicopter model, ideally suited to test intermediate to
advanced control concepts and theories relevant to real-
world applications of flight dynamics and control in tandem
rotor helicopters, or any device with similar dynamics [29].
It is equipped with two motors that can generate force
in the upward and downward direction, according to the
given actuation voltage. It also has three sensors to measure
elevation, pitch, and travel angle as shown in Figure 2.
We use the linear model of this system obtained from
the manufacturer manual [29] for constructing the safety
controller and calculating the reachable set in run-time. Due
to the lack of space, the details of the model are included in
our technical report [2].

For the 3DOF helicopter, the safety region is defined in
such a way that the helicopter fans do not hit the surface
underneath, as shown in Figure 2. The linear inequalities
describing the safety region are −ϵ + |ρ|/3 ≤ 0.3, ϵ ≤ 0.4,
and |ρ| ≤ π/4. Here, variables ϵ, ρ, and λ are the elevation,
pitch, and travel angles of the helicopter. Limitations on the
motor voltages of the helicopter are |vl| ≤ 4V and |vr| ≤ 4V
where vl and vr are the voltage for controlling left and right
motors.

6.2 Restart-Based Implementation of SEI

In this section, we discuss the implementation of the con-
trollers of the 3DOF platform and the temperature man-
agement system using the restart-based SEI approach (Sec-
tion 4). In our technical report [2], more details are provided
about the hardware and software implementation of the
controller. Due to the limited access to a real warehouse, the
controller interacts with a simulated model of the physical
plant running on a PC (Hardware-in-the-loop simulation).

8. For the details of calculation of UF/R and UR/O and the values of
the parameters refer to Chapter 2 and 3 of [39].

RoT Module:

The RoT module is implemented using a low-cost
MSP430G2452 micro-controller on a MSP-EXP430G2
LaunchPad board [38]. To enable restarting, pin P2.0 of
the micro-controller is connected to the restart input of the
main controller. Internal Timer A of the micro-controller
is used for implementing the restart timer. It is a 16-bit
timer configured to run at a clock rate of 1 MHz (i.e., 1µs
per timer count) using the internal, digitally controlled,
oscillator. A counter inside the interrupt handler of Timer
A is used to extend the timer with an adjustment factor, in
order to enable the restart timer to count up to the required
range based on the application’s needs.

The I2C interface is adopted for the main controller to
set the restart time on the RoT module. After each restart,
during the SEI, the RoT acts as an I2C slave waiting for
the value of the restart time. As soon as the main controller
sends the restart time, RoT disables the I2C interface and
activates the internal timer. Upon expiration of the timer, an
active signal is set on the restart pin to trigger the restart
event and the I2C interface is activated again for accepting
the next restart time.

Main Controller:

The controller is implemented on a Zedboard [8] which
is a development board for Xilinx’s Zynq-7000 series all
programmable SoC. It contains an XC7Z020 SoC, 512 MB
DDR3 memory, and an onboard 256 MB QSPI Flash. The
XC7Z020 SoC consists of a processing system (PS) with
dual ARM Cortex-A9 cores and 7-series programmable
logic (PL). The processing system runs at 667MHz. In our
experiments, only one of the ARM cores is used, and the
idle cores are not activated. The I2C and UART interfaces
are used for connecting to the RoT module and the actuators
of the plant. Specifically, two multiplexed I/Os, MIO14 and
MIO15, are configured as SCL and SDA for I2C respectively.
We use UART1 (MIO48 and MIO49 for UART TX and RX)
as the main UART interface.

The reset pin of Zedboard is connected to RoT module’s
reset output pin via a BSS138 chip, an N-channel voltage
shifter. It is because the output pin on RoT module operates
at 3.3 volts while the reset pin on Zedboard accepts 1.8
volts. The entire system (both PS and PL) on Zedboard is
restarted when the reset pin is pulled to the low state. The
boot process starts when the reset pin is released (returning
to the high state). A boot-loader is first loaded from the
onboard QSPI Flash. The image for PL is then loaded by
the boot-loader to program the PL which is necessary for PS
to operate correctly. Once PL is ready, the image for PS is
loaded, and the operating system will take over the control
of the system.

The platform runs FreeRTOS [1], a preemptive real-
time operating system. Immediately after the reboot,
safety_controller and find_safety_window tasks
are created and executed. safety_controller is a
periodic task with the period of 20 ms (50 Hz) and the
execution time of 100 µs and has the highest priority in
the system. Safety controller itself is designed using the
method described in Section 3.1. Each invocation of this
tasks obtains the values of sensors and sends the control
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commands to the actuators. find_safety_window
executes a loop and only breaks out when a valid safety
window is calculated. It executes at all times except
when it is preempted by safety_controller. When
find_safety_window computes a valid safety window,
it sends the value minus the elapsed time (Algorithm 2)
to the RoT module via the I2C interface, sets a global
variable in the system, and terminates. Based on this global
variable, safety_controller task terminates, and the
mission controller task is launched. find_safety_window
is implemented based on the Pseudo-code described in
Algorithm 1. Execution time of each cycle of the loop in
this function is capped at 50 ms (i.e., Tsearch := 50 ms). In
find_safety_window, to calculate the reachability of
the plant from a given state, we used the implementation
of our real-time reachability tool [11]. All the code for the
implementation can be found in the GitHub repository [2].

3DOF Helicopter Controller: ZedBoard platform inter-
faces with the 3DOF helicopter through a PCIe-based Q8
data acquisition unit [30] and an intermediate Linux-based
machine. The PC communicates with the Zedboard through
the UART interface. Mission controller is a PID controller
whose goal is to navigate the 3DOF to follow a sequence of
set points. Control task has a period of 20 ms (50 Hz), and
at every control cycle, the control task receives the sensor
readings (elevation, pitch, and travel angles) from PC and
sends the next set of voltage control commands for the
motors. The PC uses a custom Linux driver to communicate
with the 3DOF sensors and motors. In our implementation,
the restart time of the ZedBoard with FreeRTOS is upper-
bounded at 390ms.

Warehouse Temperature Controller: Due to the lack of
access to the real warehouse, we used a hardware-in-the-
loop approach to perform the experiments related to this
plant. Here, the PC simulates the temperature based on
the heat transfer model Described in Section (6.1.1). The
mission controller is a PID that adjusts the environment
temperature according to the time of the day. The controller
is implemented on the ZedBoard with the same components
and configurations as the 3DOF controller – RoT, serial port
connection, I2C interface, 50Hz frequency, and the same
restart time. Control commands are sent to the PC, applied
to the simulated plant model and the state is reported back
to the platform.

6.3 TrustZone-Assisted SEI implementation
Our prototype implementation uses LTZVisor on the Zed-
Board which provides two isolated execution environments,
secure VM and non-secure VM. LTZVisor can only use one
of the ZedBoard cores, and the other cores are not activated.
Similar to the previous section, ZedBoard is connected to
the physical plant sensors and actuators through UART
interface. The configuration of the UART pins and PL are
the same as the previous section.

safety_controller and find_safety_window are
compiled as one bare metal application and executed
in the secure VM9. The functionality of these compo-

9. LTZVisor also provides support for FreeRTOS on the secure VM
and Linux on the non-secure VM. However, at the time of this writing,
the code enabling these features is not publicly released yet. That is
why these components are implemented as bare-metal applications.

nents is identical to what was described in the previ-
ous section. Using the platform timer, we ensure that
the safety_controller function is called and executed
every 20 ms while, find_safety_window is being ex-
ecuted for the rest of the time. Once the state of the
plant reaches a state where a safety window is available,
find_safety_window returns the results, the application
yields the processor and sets the next invocation point to
the current time plus computed safety window minus the
computation time – Section 5.2. At this point, LTZVisor
restores the execution of the mission controller application
in the non-secure VM until the secure VM application is
invoked again. We use the YIELD function, provided by the
LTZVisor on the secure VM, which suspends the execution
of the application and invokes it after the specified interval
of time.

In our prototype, recovery restarts are initiated based on
a randomized scheme. We use a pseudo-random number
generator function that returns a value between 0 and 1. if
the values are less than 1/1000, we restart the platform – the
probability of 0.1 percent. Otherwise, the execution proceeds
to the normal SEI. The mechanism to trigger the restarts is
through system-level watchdog timer. This is an internal
24-bit counter that on timeout outputs a system reset to
the Processing System ( all the cores and system registers)
and Program Logic (the FPGA fabric in the ZedBoard). To
trigger a restart, the timer is enabled and set to expire on the
shortest time allowed by the resolution. The timer expires
immediately and restarts the platform.

6.4 Safety Window of the Physical Plants

At the end of each SEI, the triggering point of the next SEI
needs to be computed and scheduled. Two main factors
determine the distance between consecutive SEIs; (i) how
stable the dynamics of the plant is and (ii) the proximity
of the current state of the plant to the boundaries of
the inadmissible states. In figures 3 and 4, the absolute
maximum safety window of the physical plant is plotted
from various states for the plants under consideration.
These values are computed using Algorithm 1 except for
clarification, the lower end of the search in this algorithm,
RangeStart, is set to 0. In these plots, the red region
represents the inadmissible states, and the plant must never
reach those states. If the plant is in a state that is marked
green, it is still undamaged. However, at some future time,
it will reach an inadmissible state, and the safety controller
may not be able to prevent it from coming to harm. The
reason is that actuators have a limited physical range. In the
green states, even actuators operating with the maximum
capacity, may not be able to cancel the momentum and
prevent the plant from reaching unsafe states. The gray and
yellow highlighted regions are the operational region of the
plant – states where the safety window of the plant is larger
than zero and mission controller can execute. In the gray
area, the darkness of the color is the indicator of the length
of the safety window in that state. Darker points indicate a
larger value for the safety window.

Figures 3(a) and 3(a), plot the calculated safety windows
for the warehouse temperature management system. For
this system, when the outside temperature is too high or too
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Fig. 3: Safety window values for the warehouse temperature.
Largest value of the safety window – the darkest region – is
6235s.

low, the attacker requires less time to take the temperature
beyond or below the safety range. Note that if an adversary
take over the platform at TF = 25C , TR = 40C , and
TO = 26C – top part of Figures 3(a) – and runs the heaters
at their maximum capacity, plant will remain safe for 6235s.
Intuitively, due to high conductivity between the floor and
the room as well the high heat capacity of the floor, the rate
of heat transfer from room to the floor is larger than the
transfer rate from the heater to the room. Due to the same
reason, when the floor temperature is TF = 29C , the safety
window of the plant is almost zero near the boundary of the
TR = 40C – top part of Figure 3(a).
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Fig. 4: Safety window values for the 3DOF helicopter. Largest
value of the safety window – the darkest point – is 1.23s.

In Figure 4, the safety window for the 3DOF helicopter
are plotted – projection into the 2D plane. The darkest point,
have the largest safety window which is 1.23s. As seen in
this figure, safety window is largest in the center where it
is farthest away from the boundaries of the unsafe states. In
Figure 4(b), the angular velocity of 3DOF elevation is ϵ̇ =
−0.3Radian/s which means that the helicopter is heading
towards the bottom surface at a rate of 0.3 Radian per

second. As seen in the figure, with this downward velocity,
the plant cannot be stabilized from the lower elevation
levels (i.e., the green region). It can also be seen that in
the states with elevation less than 0.1 Radians, the safety
window is shorter in Figure 4(b) compared to Figure 4(a).
Intuitively, for the adversary, crashing the 3DOF helicopter
is easier when the plant is already heading downward.

As we mentioned earlier, the temperature management
system has higher inertia and slower dynamics than the
3DOF helicopter. The above figures reflect this effect, very
clearly. As the computed safety windows for the former
plant are orders of magnitudes larger than the latter – 6235 s
is the largest safety window for warehouse temperature
versus 1.23 s for the 3DOF helicopter. In this system,
the rate of the change of the temperature even when the
heater/coolers run at their maximum capacity is slow, and
adversary needs more time to force the state into unsafe
states.

Now, we will discuss the difference between the gray
and yellow regions. The mission controller can operate in
the yellow states only with the TEE-assisted implementation
of the SEIs and not with the restart-based implementation of
the SEIs. This is due to the following reason. In run-time,
computed safety windows are used to set the triggering
point of the next platform SEI. However, the next SEI
can be scheduled only if the safety window is larger than
the switching time of the platform, Ts, as presented in
Algorithm 2. With the restart-based implementation of the
SEIs, the switching time is equal to the restart time of the
platform (390 ms for RTOS on the ZedBoard) whereas,
with the TEE-assisted implementation, switching time is
the timing overhead of the context switching from secure
VM to non-secure VMs and vice versa (less than 12 µs for
ZedBoard at 667 MHz as presented in [28]). States marked
with the yellow color are those that the computed safety
window is shorter than the platform restart time. At these
states, with the restart-based SEI, the mission controller
cannot be activated.

As a result of using TrustZone-assisted implementation,
we measured a 234 percent increase in the size of the
operational region of the 3DOF plant – the yellow vs. the
gray area – across the 6-dimensional state space. However,
note that this measurement is very specific to this particular
platform and this specific plant. The expected improvement
highly depends on the platform restart time and the speed
of the plant dynamics. Not every CPS can be expected
to gain significant benefits from adopting TrustZone for
implementing the SEIs. For instance, if the restart time of the
platform were shorter, the size of the gray area in Figure 4
would have been larger, and the overall improvement of the
operable states – as a result of using TrustZone – would have
been smaller. Comparison between the size of the yellow
region for the 3DOF vs. the temperature management
system is another clear implication of this point. The
platform restart time compared to the length of the safety
windows of the warehouse plant is almost negligible. That
is why implementing the SEIs using TrustZone does not
yield any noticeable improvements and the yellow region
in Figure 3 is non-visible.
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6.5 Impact on Controller Availability

Every CPS has a mission that is the primary goal of the
system to accomplish. The main component that drives the
system towards this goal is the mission controller. Therefore,
every process that interrupts the execution of the mission
controller results in the slow progress of the CPS mission.
Thus, one of the consequences of our design is that the SEIs
and the platform restarts stop the execution of the mission
controller and reduce its availability. In this section, we
measure the impact of each one of the two implementations
of our design, on the average availability of the mission
controller.

The exact “availability” of the mission controller is the
ratio of time that the mission controller is executing (all the
times that the system is not in the SEI and is not going
through a restart) to the total time of the operation. In every
restart cycle, availability is defined as δmc/(δmc + TSEI + Ts).
Here, δmc is the duration of mission controller execution,
TSEI is the length of SEI, and Ts is the switching time. With
the restart-based implementation of the SEIs, Ts is equal to
the restart time of the platform, whereas, for the TrustZone-
assisted SEI implementation, Ts is the upper bound of the
time required for switching from non-secure VM to secure
VM and vice versa. The exact availability of the mission
controller is specific to the particular trajectory that the
plant takes. To get a better sense of this metric, for each
implementation, we compute the average availability of the
mission controller across all the states where the safety
window is longer than the switching time, Ts, which is 390
ms for restart-based SEI and 12 µs for the TrustZone-assisted
SEI implementation.

For the 3DOF system, with the restart-based implemen-
tation, the calculated average availability of the mission
controller is %51.2. As seen in the Figure 4, safety windows
of the 3DOF plant are in the range of 0 s to 1.23 s. The
platform has a restart time of 390 ms which is significant
relative to the values of safety windows and it notably
reduces the availability of the mission controller. On the
other hand, with the TrustZone-assisted SEIs, the average
availability of the mission controller is %85.1. When Trust-
Zone is utilized, Ts is negligible – 12µs which explains
the %35 improvement in the availability. It can be seen
that despite the negligible switching switching overhead,
the mission controller does not reach %100 availability.
This is because of the time required to evaluate the safety
conditions and execute find_safety_window in the loop
inside Algorithm 2. In the states near the unsafe/safe state
boundary, the platform might need to execute the loop cycle
more than once – longer SEI allows the safety controller to
create enough distance from the unrecoverable states.

For the temperature management system, the average
availability of the mission controller is %99.9 with both
restart-based and TrustZone-assisted implementations of
the SEIs. Due to the slow dynamics of this plant, safety
windows are much longer than the Ts and TSEI under both
implementations – as illustrated in Figure 3. Hence, the
mission controller is almost always available. Due to the
same reason, reduced switching time that is achieved when
the controller is implemented using TrustZone instead of the
restarts does not notably improve the average availability of

the mission controller.
The above results show that the impact of our approach

on the temperature management system is negligible
under both implementation schemes. In fact, the restart-
based implementation is the most suitable choice for this
plant and many other high-inertia plants. On the other
hand, integrating our design into the controller of the
3DOf helicopter comes with a considerable impact on
the availability of the helicopter controller. Even though
the TrustZone considerably reduces the overhead and
improves the availability, but still the control performance
will noticeably suffer. Note that, the helicopter system is
among the most unstable systems and therefore, one of
the most challenging ones to provide guaranteed protection.
As a result, the calculated results for the helicopter system
can be considered as an approximate upper bound on the
impact of our approach on the controller availability. In
the next section, we demonstrate that, despite the reduced
availability, the helicopter and warehouse temperature
remain safe and the plants make progress. Reduced
availability of the controller is the cost to pay to achieve
guaranteed safety and can be measured ahead of time by
designers to evaluate the trade-offs.

6.6 Attacks on the Embedded System

To evaluate the effectiveness of our proposed design, we
perform three attacks on the controllers of the 3DOF
helicopter (with the actual plant) and one attack on the
hardware-in-the-loop implementation of the temperature
management system. All the attacks are performed on
both versions of the controller implementation. In these
experiments, our focus is on the actions of the attacker
after the breach into the system has taken place. Hence, the
breaching mechanism and exploitation of the vulnerabilities
are not a concern of these experiments. An attacker may use
any number of exploits to get into the controller device.

In the first experiment, the mission controller of the
temperature management system was attacked in the
following way. The outside temperature was set to 45◦

C, and initial room temperature was set to 25◦ C.
Immediately after the SEI was finished, the malicious
controller forced both of heaters to increase the temperature
with their maximum capacity. Under the restart-based SEI,
we observed that the platform was restarted before the
temperature reached 30◦ C and after the restart, SC was able
to lower the temperature. Similar behavior was observed
with the TrustZone-assisted implementation. A switch to the
secure VM was triggered before the temperature reached
an unrecoverable value, the SC was able to lower the
temperature.

Second attack experiment was performed on the 3DOF
helicopter. Here, the attacker, once activated, killed/dis-
abled the mission controller. Under the restart-based SEIs, in
every operation cycle, the restart action reloads the software
and revives the mission controller. Therefore, the attack was
activated at a random time after the end of the SEI in each
cycle. Under the TrustZone-assisted SEI implementation,
once the mission controller is killed, it will only be recovered
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Fig. 5: 3DOF Helicopter trace under restart-based implementa-
tion during two cycles when the system is under worst-case
attack (where attacker is active immediately after the SEI).
Green: SEI, red: mission controller (in this case attacker), white:
system reboot.

when a randomized recovery restart is performed10. We
used a random value to activate the attack at a random
operation cycle – with a probability of 1 percent. After the
recovery restart, mission controller was revived and con-
trolled the plant until the next attack was triggered. During
these experiments, we observed that the 3DOF helicopter
did not hit the surface i.e., it always remained within the
admissible set of states.

In the third experiment, the attacker corrupts the sensor
readings and feeds the corrupted values in the mission
controller logic. To evaluate the safety under an extreme
case, the attack is activated immediately after the end of SEI.
In both implementations of the controller, the attack is active
during all the non-SEI and non-restart times of the system.
Similar to the first attack experiment, it was observed that
the 3DOF helicopter remained safe throughout the attack.

In the last attack experiment, we investigate the effec-
tiveness of our design against an attacker that is active
immediately after the SEI, replaces the original controller
with a malicious process that turns off the motors/fans
of the helicopter, and forces the plant to hit the surface.
During the operation of the malicious controller, the ele-

10. Note that in our prototype implementation, we did not imple-
ment a detection mechanism. However, one could deploy the logic to
monitor the mission controller and restart the platform as soon as the
controller is disabled.

vation of the helicopter was reduced. However, in every
cycle, before a crash, the safety controller will take over,
push the helicopter and increase the elevation. Throughout
this experiment, we observed that the plant tolerated the
adversarial behavior and did not hit the surface.

A trace of the states of 3DOF helicopter during two
consequent restart cycles, with the restart-based implemen-
tation of SEIs, is plotted in Figure 5. This trace is recorded
from the sensor readings of the real physical plant when the
plant is under the last attack experiment. The figure depicts
elevation, pitch, actuator control inputs (voltages of the
motor), and the safety factor. The safety factor is obtained
from the safety conditions for the 3DOF as described in Sec-
tion 6.1. From the figure, it can be seen the controller spends
most of the time in SEI (green region) and reboot (white
region) state. This is because this extreme-case attack is
activated immediately after each SEI and destabilizes the
helicopter. By the time that the reboot completes (end of
the white region), the system is close to unsafe states.
Hence, SEI becomes longer so that the SC can stabilize the
helicopter. Under this very extreme attack model, the system
did not make any progress towards its designated path, yet
it remained safe which is the primary goal in this situation.

7 RELATED WORK

There is a considerable number of techniques in the area
of fault-tolerant CPS design that focuses on protecting the
physical components in the presence of faults11. Although
similar, there are fundamental differences between pro-
tecting against faults vs. protecting against an intelligent
adversary. In what follows we review some of the papers
and elaborate the differences and similarities.

The Simplex architecture [35] is a well known fault-
tolerant design for CPS. It deploys two controllers: (i)
a high-performance (yet unverifiable) controller and (ii)
a high-assurance, formally verified, safety controller. A
decision module (formally verifiable) is used to take over
the control in the case that the high-performance controller
is pushing the physical system beyond a precomputed
safety envelope. A few variants of Simplex design exist.
Some use a varying switching logic [11], [12] while others
utilize a different safety controller [6], [46]. Nevertheless,
all these designs assume that only a subset of the software
misbehaves (for instance, they assume that switching unit
cannot misbehave), which is invalid when the systems are
under attack, and no other mechanism – such as restarts or
TEE features are employed. In contrast, our work assumes
that the adversary can corrupt “all” layers of the software.

Another variant of the Simplex architecture is System-
Level Simplex [10] where the safety controller and the
decision module run on dedicated hardware to isolate
them from any fault or malicious activities on the complex
controller (i.e., the high-performance controller). Techniques
based on this architecture [4], [5], [10], [47] guarantee
the safety of the physical plant even when the complex

11. Where the safety invariants of the physical plant must be
preserved despite the possible implementation and logical errors in the
software. Here, ‘faults’ refer to bugs in the software implementations.
Another definition for faults exists that includes physical problems (e.g.,
broken sensors/actuators/etc) – we do not consider them in this paper.
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controller is under attack. However, implementing the
System-Level Simplex design on most COTS platforms is
challenging since most commercial multicore platforms are
not designed to support strong inter-core isolation (due
to the high degree of hardware resource sharing). For
instance, an adversary residing in the high-privileged core
may compromise power and clock configurations of the
entire system. Hence, full isolation can only be achieved
by utilizing two separate boards. On the other hand, our
design provides formal safety guarantees using only one
computing unit.

Trusted hardware features are commonly employed in
the literature to achieve security goals. Some works have de-
ployed the Trusted Platform Module (TPM) to build trusted
computing environments on servers and hypervisors [27],
[31], [32]. ARM TrustZone has been utilized in recent lit-
erature [20], [44], [45] to implement security monitors in
the secure world. Authors in [9], leverage TrustZone and
propose TZ-RKP to protect the integrity of the operating
system kernel running in the normal, non-secure world. The
use of trusted hardware features to create trusted execution
environments is somewhat equivalent to the SEI concept as
presented in our paper. The analytical framework proposed
in this paper could be combined into these techniques to
develop a diverse set of CPS platforms that can provide
physical safety guarantees.

Restart-based recovery is previously explored in some
of the aforementioned Simplex-based works [4], [5]. Specif-
ically, these works restart the isolated, dedicated com-
plex controller unit – equivalent to the mission controller.
Restarting the complex controller while a safety controller
running on separate hardware maintains the safety during
the restart is more straightforward than restarting the en-
tire platform. Another Simplex-based work in which the
authors use a single hardware unit implements full-system
restarts [6]. Nevertheless, this work assumes that the safety
controller and the decision module may not be compro-
mised and are always correct. Again, this assumption is
invalid in the security context, and the physical safety
cannot be guaranteed when the system is under attack.

A recent work studies frequent restarts and diversifi-
cation for embedded controllers to increase the difficulty
of attacks [7]. In spite of the conceptual similarity, our
works mainly differ in the calculation of restart times. By
dynamically calculating the next restart time using real-time
reachability in each cycle, we can guarantee the system safety.
Whereas, the authors in [7] empirically choose the restart
times without any formal analysis.

The idea of restarting (either the entire system or a part
of the components) at run-time is not novel and has been
studied in earlier research to handle the problem of software
aging in two forms: (i) revival (i.e., reactively restarting
a failed component) and (ii) rejuvenation (i.e., proactively
restarting functioning components). Some research [19],
[23], [40] have tried to model failures and faults for client-
server applications and tried to find an optimal rejuvenation
strategy with the aim to reduce the system downtime. Some
have introduced recursively restartable systems for fault-
recovery and increased availability for Internet services [13].
The concept of microreboot (i.e., systems consist of fine-
grain rebootable components) is explored in [14], [15], [16].

In spite of entirely different purposes, these works assert
the effectiveness of restarting as a recovery technique. In
this context, some rejuvenation schemes [21] tackle software
aging problems related to arithmetic issues such as the
accumulation of numerical errors in controllers of safety-
critical plants. Nevertheless, the rejuvenation techniques for
safety-critical systems are very limited. A survey displays
that, in this research area, only 6 percent of the published
papers have considered safety-critical applications [18].

The philosophy of our work is similar to that of the
works in a trend in systems dependability that applies
the concepts and mechanisms of fault tolerance in the
security domain, intrusion tolerance (or Byzantine fault
tolerance) [17], [42]. These works advocate for designing
intrusion-tolerant systems rather than implementing pre-
vention against intrusion. Many works in intrusion-tolerant
systems have targeted distributed services in which repli-
cation and redundancy are feasible. Their goals are mainly
to ensure the availability of the system service even if some
of its nodes are compromised. Another work proposes to
proactively restore the system code from a secure source
to eliminate any potential transformations carried out by
an attacker [17]. With proactive recovery, the system can
tolerate up to f faults/intrusions, as long as no more than
f faults occur in between rejuvenations. In [41], the au-
thors propose a general hybrid model for distributed asyn-
chronous systems with partially synchronous components,
named wormholes. In [37], the authors take wormholes as
a trusted secure component (similar to our root of trust
timer) which proactively recovers the primary function of
the system. The authors suggest that such a component
can be implemented as a separate, tamper-proof hardware
module in which the separation is physical; or it can be
implemented on the same hardware with virtual separation
and shielding enforced by software. A proactive-reactive
recovery approach is introduced in [36] (built on top of [37])
that allows correct replicas to force the recovery of a faulty
replica. While these techniques are useful for some safety-
critical applications such as supervisory control and data
acquisition (SCADA), they may not be directly applicable to
safety-critical CPS. Potentially, a modified version of these
solutions might be utilized to design a cluster of replicated
embedded controllers in charge of a physical plant.

8 DISCUSSION

Some limitations need to be considered before deploying
this design to a physical plant or platform. The restart-
based implementation is most suitable for CPSs where the
platform restart time is much smaller than the speed of
the plant dynamics. Many embedded systems have reboot
times that range from tens of milliseconds [26] to tens
of seconds which are considered non-significant for many
applications such as temperature/humidity management
in storage/transportation industries, process control in
chemical plants, pressure control in water distribution
systems, and oxygen level management in patient bodies.
The main advantage of the restart-based implementation
of SEIs is that it can be deployed on the cheapest, off-the-
shelf micro-controllers that are still widely used in many
industrial applications. Also, the deployed application must
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be designed to operate within the system’s safety boundary.
Otherwise operation of the system is trivially unsafe and the
safety controller is unusable.

On the other hand, using the restart-based design on
the physical plants with high-speed dynamics will require
very frequent restarts and will significantly reduce the con-
trol performance and the progress of the system. Frequent
reboots may also pose implementation challenges. For in-
stance, the control device may need time to re-establish
a connection over the Internet or to authenticate with the
ground control. Such actions might not be possible if the
device has to restart frequently. These types of applications
will significantly benefit from the TrustZone-assisted im-
plementation that eliminates the overhead associated with
restarting. As a future direction, we are exploring a mul-
ticore implementation of TrustZone-assisted design where
the SEI runs in parallel to the mission controller and has
minimal impact on the mission controller’s performance.

While a restart clears an instance of an attack it does not
mean that the adversary is eliminated. It is possible that the
adversary attempts to compromise and damage the system
after each restart. However, even attack states cannot be
carried across multiple attack instances due to the restarts.
Each attack instance is contained by the proposed approach
since the system restarts before it reaches the unsafe region.
As a result, safety of the entire system is guaranteed.

One question that may arise is why not implement
all the controllers using TrustZone? Platforms equipped
with TrustZone or other TEEs are more expensive. Many
control applications are deployed on very low-cost micro-
controllers where only restart-based approach is feasible.
Furthermore, many high-inertia physical plants will not
gain any notable benefit if they are implemented via
TrustZone – as shown for temperature management system
in the evaluation section. In those cases, the TrustZone-
based implementation only unnecessarily complicates the
design and implementation of the CPS.

It should be noted that restart-based SEI is only suitable
for stateless controllers (e.g., mission controller) where the
control command is generated based on the current state
of the plant and environment. Such a design is useful
for some applications but cannot be utilized with stateful
controllers. In fact, for the very same reason, we introduce
the TEE-based SEI in this paper. One question that comes
into mind is about the compatibility of a stateful controller
with TEE-based SEI implementation and recovery restarts?
Note that with TEE-based SEI approach, the system is
restarted only when it is detected to be compromised.
Under the assumptions of our threat model, an adversary
can maliciously modify all the state on the memory and
disk (except read-only storage). In other words, even before
the restart, the actual state of the system is already lost,
and the stateful mission controller cannot continue to
operate. Restarting the system at this point only loses the
untrustworthy and hence unusable state.

Another important point to mention is that, under both
restart-based and TEE-based implementations of SEI, the
safety controller has to be a stateless controller so that it can
safely stabilize the plant without the knowledge of its past
states. This is the main reason that even with the TEE-based
SEI design approach, only mission-controller, which is not

critical for the safety, can be stateful. In this case, due to the
loss of states after the compromise, system will inevitably
suffer a performance loss, but the safety will not be violated.
This can be another limiting factor on the type of systems or
the kind of safety constraints imposed on it that needs to be
considered when using our approach.

9 CONCLUSION

In this paper, we present an attack-tolerant design for
embedded control devices that protects the safety of
physical plants in the presence of adversaries. Due to the
physical inertia, pushing a physical plant from a given
(potentially safe) state to an unsafe state – even with
complete adversarial control – is not instantaneous and
often takes finite (even considerable) time. We leverage this
property to calculate a safe operational window and combine
it with the effectiveness of system-wide restarts or Trusted
Execution Environments such as TrustZone to protect the
safety of the physical system. We evaluate our approach on
realistic systems and demonstrate its feasibility.
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