
A Novel Side-Channel in Real-Time Schedulers

Chien-Ying Chen∗, Sibin Mohan∗, Rodolfo Pellizzoni†, Rakesh B. Bobba‡ and Negar Kiyavash§
∗Deptartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
†Deptartment of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada

‡School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
§Deptartment of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Email: {∗cchen140, ∗sibin, §kiyavash}@illinois.edu, †rodolfo.pellizzoni@uwaterloo.ca, ‡rakesh.bobba@oregonstate.edu

Abstract—We demonstrate the presence of a novel sched-
uler side-channel in preemptive, fixed-priority real-time systems
(RTS); examples of such systems can be found in automotive
systems, avionic systems, power plants and industrial control
systems among others. This side-channel can leak important
timing information such as the future arrival times of real-
time tasks. This information can then be used to launch dev-
astating attacks, two of which are demonstrated here (on real
hardware platforms). Note that it is not easy to capture this
timing information due to runtime variations in the schedules,
the presence of multiple other tasks in the system and the
typical constraints (e.g., deadlines) in the design of RTS. Our
ScheduLeak algorithms demonstrate how to effectively exploit
this side-channel. A complete implementation is presented on real
operating systems (in Real-time Linux and FreeRTOS). Timing
information leaked by ScheduLeak can significantly aid other,
more advanced, attacks in better accomplishing their goals.

I. INTRODUCTION

Consider the scenario where an adversary wants to attack an

embedded real-time system (RTS) – parts of autonomous cars,

industrial robots, anti-lock braking systems in modern cars,

unmanned aerial vehicles (UAVs), power grid components,

the NASA rovers, implanted medical devices, etc. These

systems typically have limited memory and processing power,

have very regimented designs (stringent timing constraints for

instance) and any unexpected actions can be quickly thwarted.

Therefore, the opportunity to either steal a critical piece of

information or the ability to launch that attack which takes

control of the system can be very limited. As a consequence,

attacks on such systems require significant system specific

information. This “information” can take many forms – from

an understanding of the design of the system, to knowledge

of the critical components (either software or hardware). The

exact knowledge depends on the type of attack and the

target component. For example, say, (a) to steal important

information about when (and where) an on-board camera is

used for reconnaissance or (b) to take control away from the

ground operator of a remotely-controlled vehicle.

The one common underlying theme that pervades real-time

systems (and something that a would-be attacker should defi-

nitely address) is the importance of timing. “Timing” includes:

(i) when certain events occur, (ii) how often they occur, and,

most importantly for this paper, (iii) when (and if) they will
occur again in the future. In fact, a number of critical software

components in real-time systems are periodic in nature. As

we shall see, these periodic tasks present themselves as prime

targets for attackers.

So, how does one attack such systems, especially the

periodic (and critical) components1?

We have discovered the presence of a scheduler-based
side-channel that leaks timing information in real-time
systems – in particular those with fixed priority tasks.

The scheduler-based side-channel enables an unprivileged,
low-priority task to learn the precise timing behavior of the

critical, periodic (victim) task(s) by simply observing its own

execution intervals using a system timer. This provides an

attacker with the ability to infer the initial offset of the victim
task and precisely predict its future arrival times at runtime2.

We name the algorithms that exploit this side-channel attack,

“ScheduLeak”.

Figure 1 presents an overview of the side-channel and also

how the attacker can benefit from the scheduler side-channel-

based information. The left side of the figure shows how a

real-time system consisting of fixed-priority tasks (the boxes

at the top – the victim is a periodic task while all other

tasks can be either periodic or sporadic) that results in a

schedule (dotted boxes in the middle, with each task being

indistinguishable from the other at runtime) can be analyzed to

extract the precise future arrival time points (the green, upward

arrows) of the victim task. The right-hand side of the figure

shows how this timing information of the critical task can be

used to launch other attacks that either leak more important

information or destabilize the real-time control system. Note

that without this precise timing information, an attacker is

either forced to guess when the victim task(s) will execute or

launch the attacks at random points in time – both of which

dilute the efficacy of the attack or result in early termination

of the system.

The extraction of this runtime timing information is non-

trivial; main reasons include (a) the runtime schedule depends

heavily on the state of the system at startup, initialization vari-

ables and environmental conditions and (b) real-time systems

typically include multiple non-real-time tasks as well. Even

precise knowledge of all statically-known system parameters

is insufficient to reconstruct the future arrival times of the

1We shall see potential end results of such attacks in Section VI.
2In this paper, we do not focus on inferences of other task timing behaviors

such as job start times or job completion times.

90

2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

978-1-7281-0678-6/19/$31.00 ©2019 IEEE
DOI 10.1109/RTAS.2019.00016

Attacks Enabled by Scheduler Side-Channels

Inferring System Behaviors

Overriding Control Signals
Sc

he
du

le
r S

id
e-

Ch
an

ne
ls

Other attacksOther attacksOther attacks against real-time control systems

attacker

Analyze the execution intervals

Attacker’s task reconstructs its own execution patterns

Infer and predict future arrival
Instants of victim task

time

Core of the ScheduLeak Work

…… …

Observable
Behaviors

System Schedule

Real-time Systems (RTS)

Task Priority
low high

victim

Preemptive, Fixed-priority Real-time Scheduler

attacker’s task

other real-time tasks

victim taskTarget preemptive, fixed-priority RTS.

The victim is a periodic task such as an
engine control task.

The attacker‘s task is in user space.

•
•

•

task task tasktask

Figure 1: Overview of paper: We demonstrate how an unprivileged, low-priority task (in user space) can use the ScheduLeak

algorithms to infer execution behaviors of critical, high-priority periodic task(s). The extracted information is useful for helping

other attacks achieve their primary goals (two such attack instances are implemented in this paper as possible use cases).

victim. While a privileged attacker could target the scheduler

of the system and extract the requisite information, such

access typically requires significant effort and/or resources.

On the other hand, we are able to reconstruct the information

with the same level of precision using an unprivileged user
space application. This is achieved by letting the attacker’s

application keep track of its own scheduling information.

Coupled with some easily obtainable information about the

system (e.g., the victim task’s period), the attacker can recreate

the targeting timing information with high precision.

To be more specific, let’s say that we want to override the

(remote) control of a rover. In many such systems, a periodic

pulse width modulation (PWM) task drives the steering and

throttle. Without knowledge of when the PWM task is likely

to update the motor control values, the attacker is forced

to employ brute force or random strategies to override the

PWM values. These could either end up being ineffective

or lead to the entire system being reset before the attack

succeeds (see Section VI for more details on this and another

scenario). Armed with knowledge from ScheduLeak, our

smart adversary can now override the PWM values right after
they have been written by the corresponding task – effectively

overriding the actuation commands.

Scheduler covert channels, where two processes covertly

communicate using the scheduler, have long been known

(e.g., [1], [2], [3]). In contrast, our focus is on a side-channel
that leaks execution timing behavior (not deliberately, as
opposed to the scheduler covert channels) of critical, high-
priority real-time tasks to unprivileged, low-priority tasks.

We focus on uniprocessor (i.e., single-core) systems with

a preemptive, fixed-priority real-time task scheduler [4], [5]

since they are the most common class of real-time systems

deployed in practice today [6]. It is important for an attacker

to stay within the strict execution time budgets allotted to the

unprivileged task – especially during the phases when it is

trying to observe and reconstruct the victim’s timing behavior.

Failing this requirement will likely cause other critical real-

time functionality to fail or trigger a watchdog timeout that

resets the system, leading to premature ejection of the attacker.

This property is crucial during the ‘reconnaissance’ phase of

what has come to be known as advanced persistent threat

(APT) attacks [7], [8]. E.g., it has been reported that attackers

had penetrated and stayed resident undetected in the system

for months before they initiated the actual attack in the case of

Stuxnet [9]. Once they had enough information about system

internals, they were able to craft effective attacks tailored to

that particular system.

The ScheduLeak algorithms are implemented on both:

(a) real hardware platforms running Real-Time Linux and

FreeRTOS (for the two attack case studies) and (b) a simulator.

We evaluate the performance and scalability of ScheduLeak

in Section VII, along with a design space exploration (on the

simulator). The results show that our methods are effective

at reconstructing schedule information and provide valuable

information for later attacks to better accomplish their attack

goals. To summarize, the main contributions are:
1) Novel scheduler side-channel attack algorithms that can

accurately reconstruct the initial offsets and predict future

arrival times of critical real-time tasks in real-time systems

(without requiring privileged access) [Section III]

2) Analyses and metrics to measure the accuracy in predict-

ing the execution and timing properties of the victim tasks

[Sections IV and VII].

3) Implementation and case studies on real hardware plat-

forms (i.e., autonomous systems) running Real-time Linux

and FreeRTOS [Section VI].

II. SYSTEM AND ADVERSARY MODEL

A. Time Model

We assume that the attacker has access to a system timer on

the target system and therefore time measured by the attacker

has the resolution equal3 to this system timer. The timer can

3Section VI-A demonstrates a case that the attacker may use a coarser time
resolution and the proposed attack algorithms would still work.

91

Table I: A summary of the system and adversary model.

Real-Time System Assumptions
A1 A preemptive, fixed-priority real-time scheduler is used.
A2 The victim task is a periodic task.

Attacker’s Capabilities (Requirements)
R1 The attacker has the control of one user-space task (observer

task) that has a lower priority than the victim task.
R2 The attacker has knowledge of the victim task’s period.
R3 The attacker has access to a system timer on the system.

Attacker’s Goals
G1 Infer the victim task’s initial offset and predict future arrivals.

be either a software or a hardware timer (e.g., a 64-bit Global
Timer in FreeRTOS or a CLOCK MONOTONIC-based timer in

Linux). We consider a discrete time model [10]. We assume

that a unit of time equals a timer tick (of the timer that the

attacker can access) and the tick count is an integer. All system

and task parameters are multiples of a time tick. We denote

an interval starting from time point a and ending at time point

b that has a length of b− a by [a, b) or [a, b− 1].

B. System Model

We consider a uniprocessor (i.e., single-core), fixed-priority,

preemptive real-time system consisting of n real-time tasks

Γ = {τ1, ...τn}. A task can be either a periodic or a sporadic

task. Each task τi is characterized by (pi, di, ei, ai, prii) where

pi is the period (or the minimum inter-arrival time), di is the

relative deadline, ei is the worst-case execution time (WCET),

ai is the initial task offset (i.e., the arrival time) and prii is

the priority. We assume that every task has a distinct period4

and that a task’s deadline is equal to its period [5]. We use

the same symbol τi to represent a task’s job (or instance) for

simplicity of notation. We assume that task release jitter is

negligible. Thus, any two adjacent arrivals of a periodic task

τi has a constant distance pi. We further assume that each task

is assigned a distinct priority and that the taskset is schedulable

by a fixed-priority, preemptive real-time scheduler. Let hp(τi)
denote the set of tasks that have higher priorities than that of

τi and lp(τi) denote the set of tasks that have lower priorities

than τi. We define an “execution interval” of a task to be an

interval of time [a, b) during which the task runs continuously.

If τi is preempted then the execution will be partitioned into

multiple execution intervals, each of which has length less than

ei.

C. Adversary Model

We assume that an attacker is interested in targeting one
of the critical tasks in the system that we henceforth refer

to as a “victim task”, denoted by τv ∈ Γ. We also assume

that τv is a real-time, periodic task. Many critical functions in

real-time control systems are periodic in nature, e.g., the code

that controlled the frequency of the slave variable-frequency

drives in the Stuxnet example [9]. In all such cases, the period

4This assumption is in line with existing standards in the design of real-
time tasks to ensure distinct periods/priorities. For example, AUTOSAR (a
standardized automotive software architecture) tools map runnables/functions
activated by the same period to a single task to reduce context switch/pre-
emption overheads.

of the task is strictly related to the characteristics of the

physical system and thereby can be deduced from the physical

properties; hence, we can assume that the attacker is able to

gain knowledge of the victim task’s period beforehand. It is

common that, before attacking complex systems (e.g., CPS),

adversaries will study the design and details of such systems.

However, the attacker does not know the initial conditions at

system start-up (e.g., the task’s initial offset) and may not have

information on all the tasks in the system. All other tasks in

the system can be either periodic, sporadic or non-real-time,

depending on the design of the system. Hence, the methods

developed in this paper can target systems that have a mix of

periodic, sporadic and non-real-time tasks.

The ultimate goal varies with adversaries and the systems

under attack. For example, in advanced persistent threat (APT)

attacks [7], [8], one may plan to interfere with the operations of

critical tasks, eavesdrop upon certain information via shared

resources or even carry out debilitating attacks at a critical

juncture when the victim system is most vulnerable. Often-

times, such attacks require the attacker to precisely gauge the

timing properties of victim tasks. In this paper, we introduce

attack algorithms that help an attacker obtain this valuable

information during the reconnaissance stage. In this context,

the main goal of the attacker is to precisely infer when the
victim task is scheduled to run in the near future (i.e., the
future arrival times).

Note that our focus in this paper is on how to reconstruct

the timing behavior of a higher-priority periodic victim task

using the scheduler side-channel without violating the real-

time constraints. We do this from the vantage point of a

compromised, lower-priority (“observer”) task. We do not

focus on how attackers get access to the observer task. They

could use any number of known methods – from compromised

insiders, to supply chain vulnerabilities in a multi-vendor

development model (as is usually practiced for the design

and development of large, complex systems such as aircraft,

automobiles, industrial control systems, etc.) [11], to vulner-

abilities in the software and network among others. Recent

work has demonstrated that real-time systems like commercial

drones contain design flaws and hence are vulnerable to

compromise [12], [13]. The details of gaining access to an

observer task are out of scope for this paper. Nevertheless, it

is important to note that we do not require the observer task to
be a privileged task in the system. A summary of assumptions,

attacker’s capabilities and goals is given in Table I.

D. Observer Task

As previously mentioned, we refer to the lower-priority

task that the attacker controls as an “observer task” and it

is denoted by τo ∈ Γ. It can be a user-space task. The only

constraint we place on τo is that it has a lower priority than

the victim task, priv > prio. The observer task can be either

a periodic or a sporadic task and its period (or its minimum

inter-arrival time) can be shorter or longer than the victim

task. In particular, being a periodic task is a more restrictive

condition since it reduces the flexibility available to an attacker

92

(this will be clearer as we introduce the algorithms). That is,

the case where a periodic observer task with a period po and

priority prio can succeed, a sporadic observer task (by picking

the same po as the minimum inter-arrival time and the same

priority prio) can also succeed. Therefore, when analyzing the

attack capabilities in Section IV, we will consider a periodic

observer task (or a sporadic observer task running at a constant

inter-arrival time).

In this paper, we use the observer task to infer the initial
offset av that can be used to predict future arrivals of the
victim task. We let the observer task “monitor” its own

execution intervals by using a system timer. Note that reading

system time does not require privilege in most operating

systems (e.g., invoking clock gettime() in Linux). The key

idea here is that the intervals when the observer task is active

cannot contain the victim task’s execution or its arrival time

point since the victim would have preempted the observer task.

However, there are also other higher-priority tasks that can

impact the observer task’s execution behaviors. To the attacker,

the challenge is to then filter out unnecessary information and

extract the correct information about the victim task. This is

explained in the following section.

III. SCHEDULEAK

A. Overview

We now introduce the core algorithms. The main idea is that

the victim task cannot run while the observer task is running

since the latter has a lower priority. By reconstructing the

observer task’s own execution intervals and analyzing those

intervals based on the victim task’s period, we may infer

the initial offset and future arrival times for the victim task.

A high-level overview of the various analyses stages in our

proposed ScheduLeak algorithms includes:
1) Reconstruct execution intervals of the observer task: first,

the observer task uses a system timer to measure and

reconstruct its own execution intervals (i.e., times when it

itself is active). [Section III-B]

2) Analyze the execution intervals: The reconstructed ex-

ecution intervals are organized in a “schedule ladder
diagram” – a timeline that is divided into windows that

match the period of the victim task. [Section III-C]

3) Infer the victim task’s initial offset and future arrivals:

in the final step, the initial offset for the victim task is

inferred. This information is then used to predict the future

arrivals of the victim. Since the victim task is periodic

in nature, the offset from the start of its own window

translates to the offset from startup when the first instance

of the victim task executed. [Section III-D]

B. Reconstruction of Execution Intervals

The first step is to reconstruct the observer task’s execution

intervals. We implement a function in the observer task that

keeps track of time read from the system timer. By examining

the polled time stamps, preemptions (if any) can be identified

and the execution intervals of the observer task can be recon-

structed. While this function seems straightforward, ensuring

that it respects real-time constraints (i.e., all real-time tasks

must meet their deadlines) is critical. That is, the observer task

should not run more than its WCET, eo. Furthermore, even if

the attacker does not exceed the allocated execution budget

for itself, it may want to save some budget for other purposes

such as performing the analyses to reconstruct the timing

information of the victim. Hence, we define a parameter, λ,

whose value is set by the attacker, to limit the running time

of the aforementioned function for the observer task in each

period. This “maximum reconstruction time”, λ, is an integer

in the range 0 ≤ λ ≤ eo. The total length of the reconstructed

execution intervals is λ in each period and this leaves the

timespan eo − λ for the observer task to carry out other

computations. As a result, the service levels guaranteed by

the original (clean) system is still maintained – thus reducing

the risk of triggering system errors. On the flip side, the

attacker may not be able to capture all possible execution

intervals and this could reduce the fidelity/precision of the final

results. Section IV-B discusses how to compute good values

for λ. Figure 2 shows examples of reconstructed execution

intervals. The function for reconstructing an execution interval

of the observer task while taking λ into account is detailed in

Appendix-A as Algorithm 1.

C. Analysis of Execution Intervals

Once the observer task’s execution intervals are recon-

structed, we analyze the data to extract information about the

victim task. We organize the observer’s execution intervals

into a timeline split into lengths of the victim task’s period pv
(recall that pv is one of the known quantities for the attacker).

The purpose of this step is to place the execution intervals of

the observer task within periodic windows of the victim task.

The timeline split into windows of length that matches the

victim task’s period allows the attacker to see how the observer

task’s execution intervals are influenced by the victim task as

well as other higher-priority tasks.

To better illustrate the idea of the timeline and the proposed

algorithms, we will use a “schedule ladder diagram” (defined

below) to represent the construction of the timeline in this

paper. The rows in the schedule ladder diagram can be merged

into a single-line timeline (and is just an analytical “trick”).

A schedule ladder diagram is a skeleton consisting of a set

of adjacent timelines of equal lengths – that match the victim

task’s period pv . The start time of the top section can be an

arbitrary point in time assigned by the attacker (e.g., the time

instant when the algorithms are first invoked). The columns

in the schedule ladder diagram are “unit time columns”.

So, there are pv time columns. That is, the schedule ladder

diagram has the same time resolution as the reconstructed

execution intervals. The skeleton of a schedule ladder diagram

is illustrated in Figure 3. From the diagram, plotted based on

pv , we make the following observation:

Observation 1. Any schedule ladder diagram of τv must

contain exactly one arrival instance of τv in every row. All

arrivals of τv are located in the same time column.

93

(a) No preemption has occurred.

(b) Some tasks τi ∈ hp(τo) preempt τo.

Figure 2: Examples of reconstructed execution

intervals of the observer task. The total length

of the reconstructed execution interval(s) is λ
that leaves eo − λ for τo to perform original

task functions.

Figure 3: The skeleton of a schedule

ladder diagram. The start time t of the

diagram (i.e., the beginning of the top

timeline) is an arbitrary point in time,

assigned by the attacker. The width

of each timeline matches the victim

task’s period pv . The relative offset

between the start time t and the true

arrival column is defined by δv .

Figure 4: The processed schedule lad-

der diagram for Example 1.

This observation is true because τv is a periodic task that

arrives every pv time units and the schedule ladder diagram

is plotted with its interval equal to pv . We define the column

where the arrivals of the victim task are located as the “true

arrival column”, denoted by δv . Thus, the correlation between

the initial offset av and the true arrival column δv can be

derived by (t+ δv − av) mod pv = 0, where t represents the

(arbitrary) start time of the schedule ladder diagram assigned

by the attacker. This is also depicted in Figure 3. Based on this

observation, we define the following theorem with respect to

the observer task’s executions on the schedule ladder diagram:

Theorem 1. The observer task’s execution intervals do not

appear at the time columns [δv, δv + bcetv), where bcetv is

the best case execution time of τv .

Proof. From Observation 1, the victim task τv arrives regularly

at time column δv . If there exists lower priority tasks lp(τv)
in execution at δv column, the victim task preempts such tasks

until it finishes its job with length of bectv at a minimum. In

the case that there exists higher priority tasks hp(τv) that are

executing or arriving during [δv, δv+bcetv), the victim task τv
is preempted. Under this circumstance, if the observer task τo
had arrived during [δv, δv + bcetv), as a lower priority task, it

is also preempted. Therefore, the time columns [δv, δv+bcetv)
cannot contain the execution intervals of the observer task. �

In other words, the time columns where the observer task

τo can ever appear are not the true arrival column δv . To

this end, it’s easier to think of the problem as the process of

eliminating those such time columns. If we place the obtained

execution intervals of τo on the schedule ladder diagram and

remove the corresponding time columns, then, there must

exist at least an interval of continuous time columns, of

which the length is equal to or greater than bcetv , that is

not removed in the end. Those time columns are candidates

for the true arrival time of τv . There may also exist time

columns that are not removed due to other higher-priority

tasks. Yet, since other tasks have distinct arrival periods (or

random arrivals for sporadic tasks), those time columns tend

to be scattered (compared to [δv, δv+bcetv)) and are expected

to be eliminated as more execution intervals of the observer

task are collected. In practice, our results indicate that this

process works effectively and is mostly stabilized after an

attack duration of 5 · LCM(po, pv) (see Section VII-B1).

Example 1. Consider an RTS consisting of four tasks Γ =
{τ1, τo, τv, τ4}. For the sake of simplicity, we assume that all

tasks are periodic in this example (though our analysis can

work with periodic, sporadic and mixed systems as well). The

task parameters are presented in the table below (on the left).

Note that prii > prij means that τi has a higher number than

τj . Thus, task τ1 has the lowest priority while task τ4 has the

highest priority and τv has higher priority than τo. Let the

maximum reconstruction duration λ be 1 and the start time

of the attack be 0 (as a result, av equals δv in this example).

Assuming the attacker has executed the first step/algorithm for

some duration, the table below lists the reconstructed execution

intervals of the observer task.

pi ei ai prii

τ1 15 1 3 1
τo 10 2 0 2
τv 8 2 1 3
τ4 6 1 4 4

Reconstructed
Execution Intervals

[0,1)
[12,13)
[20,21)
[30,31)
[43,44)

Note that since τ1 has priority lower than the observer task

τo, it does not influence the execution of τo. Then, we place the

reconstructed execution intervals in a schedule ladder diagram

of width equal to the victim task’s period pv . This operation

is shown in Figure 4. To better understand the effectiveness

of the schedule ladder diagram in profiling the victim task’s

behavior, we plot the original, complete, schedule on the ladder

diagram in Figure 12 in Appendix so that readers get a better

sense of it. This gives us an insight into the relation between

the execution intervals of τo and that of the victim task.

From the schedule ladder diagram in Figure 4, we remove

the time columns that are occupied by the observed execution

intervals. The results are shown at the bottom of Figure

4. What’s left are candidate time columns that contain the

94

true arrival times for the victim that we want to extract.

These intervals are passed to the final step to infer the initial

offset/arrival times of the victim task. �

D. Inference of Initial Offset and Future Arrival Instants

We now get to the final step – inferring the future arrival

instants of the victim task – our original objective. But, first,

we need to calculate the initial offset of the victim task.

What we get from the previous step is a set of intervals of

candidate time columns that contains the true arrival column

of the victim task. The number of intervals depends on the

number of collected execution intervals as well as the “noise”

introduced by other, higher-priority, tasks (hence, there is no

guarantee that all false time columns can be eliminated in the

end). However, as observed from our experiments and based

on Theorem 1, the false time columns tend to be scattered.

Therefore, we take the largest interval as our inference that

may contain the true arrival column of the victim task. We then

pick the start of this interval as the inferred true arrival column,

denoted by δ̂v . While this strategy is not always guaranteed to

succeed, our evaluation (both case studies in Section VI and

performance evaluation in Section VII) shows that we are able

to achieve a high degree of precision for the inference. The

required initial offset, denoted by âv , can then be derived as

âv = (t+ δ̂v) mod pv , where t represents the start time of the

schedule ladder diagram.

Example 2. The intervals obtained from Example 1 corre-

spond to the time columns [1, 3), [5, 6) and [7, 8). According to

the algorithm, the largest interval, [1, 3), is selected. The start-

ing point of such an interval is then taken as the inference of

the victim task’s true arrival column, which becomes δ̂v = 1.

In this example, the true arrival column is δv = 1. Therefore,

the algorithms correctly infer the true arrival column of the

victim task and the initial offset can be derived accordingly.�
Now, the future arrivals of the victim task can easily be

computed by âv + pv · T , T ∈ N, where âv is the inferred

initial offset of τv , pv is the period of τv and T is the desired

arrival number. The result of this calculation is the exact time
of the T th arrival of the victim task.

IV. ANALYSIS OF ALGORITHMS

A. Analyzing Attack Capability

We now discuss how to determine the attack capability or

effectiveness of the observer task with respect to the victim

task. That is, in this context, whether the observer task can

remove all false time columns, and hence, correctly infer the

arrival information of the victim task. Note that the analysis

presented in this section focuses on the observer task being

a periodic task since, as we mentioned in Section II-D, it is

a more restrictive condition to an attacker. Given the same

target system, a sporadic observer task may perform better as

the sporadic task naturally has more flexible arrivals that are

constrained only by its minimum inter-arrival time.

A conservative condition ensuring that all false time

columns can be removed from the schedule ladder diagram of

τv is: when the observer task’s execution intervals appear in

all possible time columns. Therefore, we first analyze how the

observer task’s execution relates to the victim task’s execution.

When considering both τv and τo as periodic tasks, we have

the following observation and theorem:

Observation 2. In the schedule ladder diagram, the offset
between the time column of each observer task’s arrival (i.e.,
the scheduled execution) and the true arrival column repeats

after their least common multiple, LCM(po, pv). �
Theorem 2. If the given observer task τo and the victim

task τv satisfy the inequality eo ≥ GCD(po, pv), then the

scheduled execution of τo is guaranteed to appear in all time

columns of the schedule ladder diagram of τv .

Proof. From Observation 2, the time column offset of the ob-

server task’s execution repeats every LCM(po, pv). Therefore,

the aforementioned condition (i.e., the scheduled execution of

τo appears in all possible time columns) can be described

by the inequality
LCM(po,pv)

po
· eo ≥ pv . Then, by using

LCM(po, pv) =
popv

GCD(po,pv)
, we can derive a condition for

eo that guarantees that the observer task can detect the arrivals

of the victim task to be eo ≥ GCD(po, pv). �
From Theorem 2, we find that the observer task’s scheduled

execution can appear in some of the time columns more than

once during LCM(po, pv) when eo > GCD(po, pv). The

redundant coverage means that the false time columns will

be visited by τo more frequently when compared to the lower

ratio of eo to GCD(po, pv). In contrast, if eo < GCD(po, pv),
then not all the false time columns can be covered and

examined by the observer task. To better profile the observer

task’s coverage, we further define a coverage ratio that depicts

the observer task’s capability against the victim task as follows

Definition 1. (Coverage Ratio) The coverage ratio, denoted

by C(τo, τv), is computed by

C(τo, τv) =
eo

GCD(po, pv)
(1)

The coverage ratio can be loosely interpreted as the pro-

portion of the time columns where the observer task can

potentially appear in the schedule ladder diagram. If all pv
time columns can be covered by the observer task, then

C(τo, τv) ≥ 1. Otherwise 0 ≤ C(τo, τv) < 1.

B. Choosing The Maximum Reconstruction Duration λ

Recall that, the maximum reconstruction duration λ is used

to limit the amount of execution time (in a period) taken up

by the observer task for running the attack algorithms. As the

attacker wants to stay stealthy and minimize disruption to the

original functionality, it is desirable to use a λ value as small

as possible. The remaining execution time eo − λ can then

be used by the attacker to deliver the original functionality of

τo while making progress on the capturing of execution data.

Based on this idea, λ can be determined by:

λ =

{
GCD(po, pv) if C(τo, τv) ≥ 1

eo otherwise
(2)

95

PWM Outputoverridden at random offset Rover Control System
(RPi + Navio2)

• Real-time Linux
• APM Code Stack

PWM Outputoverridden at precise offset

PWM Outputwithout attacks
Steering (Servo)

Throttle (ESC)(a)
(b)
(c)

Figure 5: An illustration of PWM channels on a rover system. (a) The PWM outputs are updated periodically by a 50Hz
task. (b) A naive attack issuing the PWM updates at random instants may not be effective. (c) By carefully issuing the PWM

updates right after the original updates, the PWM outputs can be overridden.

In the case of C(τo, τv) ≥ 1, the observer task has

redundant coverage. Since a one-time coverage is sufficient

for the observer task to examine all pv time columns, the

additional coverage can be traded for other purposes. Oth-

erwise (C(τo, τv) < 1), the attacker may need to utilize all its

computational resource for the attack.

V. EVALUATION METRICS

To evaluate ScheduLeak, we define the following two metrics:

(i) Inference Success Rate: We define an inference to be

successful if attacker is able to exactly infer the victim task’s

initial offset (recall from Section III-D that once we know the

initial offset, we can easily predict the future arrival instants).

Therefore, the result of an inference is either true or false. The

inference success rate is an average of the true/false results
for a given test condition for a set of task sets.

(ii) Inference Precision Ratio: In the case that the inference

is not exact, we define a metric to evaluate the degree of

the inference precision (i.e., how close we got to the actual

values). In this paper, the inference target is the initial offset

of the victim task. We first compute the distance between the

inference and the true value by ε = |âv − av| , where av is

the initial offset of the victim task and âv is the inferred initial

offset. We then define the inference precision ratio:

Definition 2. (Inference Precision Ratio) The inference pre-

cision ratio, denoted by I
o
v , is computed by

I
o
v =

⎧⎨
⎩
1− pv−ε

pv
2

if ε > pv

2

1− ε
pv
2

otherwise
(3)

The inference precision ratio is a real number within 0 ≤ I
o
v ≤

1. It allows us to know how close the inference is to the true

initial offset. Iov = 1 indicates that the inference of the initial

offset av is absolutely correct.

VI. EVALUATION USING CASE STUDIES

ON REAL PLATFORMS

Before evaluating performance of the introduced algorithms,

we first aim to evaluate the feasibility of such algorithms

on realistic platforms in this section. The ScheduLeak al-

gorithms are implemented on two operating systems with

a real-time scheduling capability: (i) Real-Time Linux [14]

and (ii) FreeRTOS [15]. In what follows, two attack cases

are presented. They benefit from the information obtained

by the proposed algorithms and utilize such information to

accomplish their primary attack goals. The demo videos for

these attack cases can be found at https://scheduleak.github.io/.

A. Overriding Control Signals

Attack Scenario and Objective: A large number of real-time

control systems encapsulate subsystems that control actuators.

For instance, in modern automotive systems, the engine control

unit (ECU) controls the valve in the electronic throttle body

(ETB) to enable electronic throttle control (ETC). In most

unmanned drones, the flight controller manages the rotary

speed of the motors via the electronic speed controller (ESC).

In these systems, the actuation signals such as PWM signals

are periodically updated to guarantee a fast and consistent

response for the control mission.

Let’s consider an attacker who wants to be able to stealthily

override the control in such systems – for the purpose of

bad control by causing misbehavior or even taking over the

control of the system for a short time span. To do so, the

attacker gets into the system as a malicious task and tries

to override the control signals. A brute force strategy of

excessively overriding the control signals will not work in this

scenario because its high attack overhead can cause other real-

time tasks to miss their deadlines and lead to a system crash. In

this case, knowledge of exact timing when the control signals

are updated and overriding them at the right instants allow the

attacker to effectively take control with a low overhead.

Implementation: We implement this attack on a custom rover.

Its control system is built with a Raspberry Pi 3 Model

B board. A Navio2 module board that encapsulates various

inertial sensors is attached to the Raspberry Pi board. The sys-

tem runs Real-Time Linux (i.e., Raspbian, kernel 4.9.45 with

PREEMPT RT patch) with Ardupilot [16] autopilot software

suite (one of the most popular open-source code stack in the

remote and autonomous control communities). It consists of a

set of real-time and non-real-time tasks to perform control-

related jobs such as refreshing GPS coordinates, decoding

remote control commands, performing PID calculation and

updating output signals. One of the tasks periodically updates

the PWM values, with a period of 20ms, for steering and

throttle. The updates are sent over Serial Peripheral Interface

(SPI) to the Navio2 module that outputs the PWM signals to

a servo and a ESC. Figure 5(a) shows an illustration of the

PWM output channels working under normal circumstances.

96

0 10 20 30 40 50 60
0

2000
4000
6000
8000

10000
12000
14000
16000

 Cache Probes without ScheduLeak's Assist

C
ac

he
 M

is
s

C
ou

nt
 (C

ac
he

 L
in

es
)

Elapsed Time (Seconds)

(a) Attack without ScheduLeak’s assist.

0 10 20 30 40 50 60
0

2000
4000
6000
8000

10000
12000
14000
16000

 Cache Probe Inference: Camera Inactivated
 Cache Probe Inference: Camera Activated

C
ac

he
 M

is
s

C
ou

nt
 (C

ac
he

 L
in

es
)

Elapsed Time (Seconds)

1 2 3 4

(b) Attack with ScheduLeak’s assist.

1

2

3

4

(c) HIL simulator recorded data.

Figure 6: Results of the cache-timing side-channel attacks in Section VI-B. (a) demonstrates that a random mechanism launching

the attack at arbitrary instants will lead to many indistinguishable cache usage results. (b) shows a successful attack in which

four camera activation events (numbered by 1 to 4) are identified from the cache probes using precise time information

(inferred by ScheduLeak). (c) visualizes the UAV’s trajectory (bold line), true locations-of-interest (green circles) and the

attacker’s inference (red pins) for the attack (b). The result shows that the attacker’s inference matches the ground truth.

In this attack, we assume that the attacker has access to a

low-priority, periodic task (as the observer task, po = 50ms)

and a non-real-time Linux process (for launching the PWM

overriding attack). The attacker’s ultimate objective is to

override the control signals updated by the victim task (i.e., the

50Hz periodic task). In this implementation, the observer task

uses a system call, clock gettime(), to obtain clock counts

(in nanoseconds) from CLOCK MONOTONIC. Time measurement

is further rounded up to microseconds when running the

ScheduLeak algorithms since all task parameters are multiples

of 1us in Ardupilot. Once the victim task’s initial offset is

determined, the attacker engages the non-real-time process

to issue the PWM updates over the same interface that the

victim task uses. Note that this is possible due to a lack

of authentication between the Raspberry Pi board and the

Navio2 module by design. This process keeps track of time

by using clock gettime() and issues two PWM updates

(one for the steering and one for the throttle) whenever it

determines that it has passed a victim task’s arrival instant

(i.e., t− âv mod pv ≥ 0, where t is the present time and âv is

the inferred victim task’s initial offset). The process remains

idle between two PWM updates to reduce the attack footprint.

Attack Results: Figures 5(b) and 5(c) show that the PWM

output may be overridden using a different value to the

PWM hardware. However, without exact schedule information,

the attacker can only periodically send the updates with a

randomly selected initial offset (Figure 5(b)). The random

initial offset can be any point in the 20ms period. From our

experiments, only the attack with an initial offset in the range

between av and av+8.3ms can produce an effective override

of the steering and throttle controls. As a result, the attacker

has a chance of 41.5% to select a valid initial offset and lead

to an effective attack.

On the other hand, the attacker, after launching the Sched-

uLeak attack and knowing exactly when the victim task ar-

rives, can carefully issue PWM update right after the original
update to override the PWM output (Figure 5(c)). In this

case, the attacker firstly runs the ScheduLeak algorithms in the

observer task, yielding 0.9985 for the inference precision ratio

(for inferring the victim task’s initial offset) in a duration of 1

second. This allows the attacker to launch the PWM overriding

attack in the non-real-time process with the precise inference

of the victim task’s initial offset. Note that an attacker’s PWM

update attempted at a victim task’s arrival instant is executed

after the victim task’s job is finished (and hence after the

original PWM update) since the non-real-time process has a

priority lower than the victim task. Consequently, the attacker

can take over control of the steering and throttle. By probing

the PWM signals, we observe that the overridden PWM signals

are active 85% of the time. As a result, we see that the rover

no longer responds to the original control. Instead, the rover is

driven by the attacker’s commands. Since the attacker’s task

remains idle between two PWM updates, it takes up CPU

utilization as small as 2.6%.

B. Inferring System Behaviors

Attack Scenario and Objective: Let’s consider a UAV system

executing a surveillance mission. It captures high resolution

images when flying over locations of high-interest. In this

case, the attacker’s goal is to extract the locations targeted

by the UAV. The strategy is to monitor when the surveillance

camera on the UAV is switched to a execution mode in which

high-resolution images are being processed. This can be done

by exploiting a cache-timing side-channel attack to gauge the

coarse-grained memory usage behavior of the task that handles

the images. A high cache usage by this task would indicate

that a high-resolution image is being processed; otherwise it

would use less cache memory. However, a random sampling

of the cache will result in noisy (and often useless) data since

there exist other tasks in the system that also use the cache.

In contrast, knowing when the task is scheduled to run allows

the attacker to execute prime and probe attacks [17], [18] very

close to the targeted task’s execution.

Implementation: This attack is implemented in a hardware-

in-the-loop (HIL) simulation with a Zedboard running

FreeRTOS that simulates the control system on a UAV. The

system consists of an image processing task (the victim task,

pv = 33ms) handling photos at a rate of 30Hz and four other

tasks (unknown to the attacker) – all running in a periodic

fashion. The victim task processes a large size of data when the

UAV reaches a location of interest on a preloaded list. Other

tasks consume differing amounts of memory. In this case,

we assume that the attacker enters the system as the lowest-

97

priority periodic task, po = 40ms. The attacker uses this task

for both running the ScheduLeak algorithms and carrying out

the cache-timing side-channel attack. The attacker’s final goal

is to observe the victim task’s memory usage and learn the

system behavior.

Attack Results: First, we consider an attacker who does

not employ a ScheduLeak attack. The attacker launches the

cache-timing side-channel attack during every period to try

and estimate the cache usage of the victim. As shown in

Figure 6(a), this produces many cache probes and it is hard

to distinguish the cache usage of the victim task from other

tasks. This results in an unsuccessful attack since no usage

patterns from the victim task can be identified.

Next, let’s consider the case in which the attacker leverages

the ScheduLeak attack. In this case, the algorithms yield

an inference precision ratio of 0.99 within a window of

3 · LCM(po, pv) (i.e., 4 seconds). Then, the attacker is able

to launch the cache-timing side-channel attack right before

and after the victim is executed and skip those instants that

are irrelevant. Figure 6(b) shows the result of the precise

cache probe against the victim task. We see that the attack

greatly reduces the noise caused by other tasks (96.9% of the

cache probes are omitted) and is able to precisely identify the

victim task’s memory usage behavior. As a result, four camera

activation instants can be identified from the spikes (red

triangular points) shown in Figure 6(b). When coupled with

the flight route information that the attacker obtains through

other measures, it becomes possible to infer the locations of

high-interest, as shown in Figure 6(c).

VII. PERFORMANCE EVALUATION

AND DESIGN SPACE EXPLORATION

A. Evaluation Setup

We test our algorithms with randomly generated synthetic

task sets. The task sets are grouped by CPU utilization from

[0.001+0.1 ·x, 0.1+0.1 ·x] where 0 ≤ x ≤ 9. Each utilization

group consists of 6 subgroups that have a fixed number of tasks

(5, 7, 9, 11, 13, 15). Each subgroup contains 100 task sets. In

each task set, 50% of the tasks are generated as periodic tasks

(3, 4, 5, 6, 7, 8 periodic tasks for each subgroup respectively)

while the rest of the tasks are generated as sporadic tasks.

The task periods are randomly drawn from [100, 1000] and

we assume that the attacker has access to the system time

with a resolution of 1. The task initial offset is randomly

selected from [0, pi). In the case of sporadic tasks, we take the

generated task period as the minimum inter-arrival time. The

task priorities are assigned using the rate-monotonic algorithm

[5]. We only pick those task sets that are schedulable.

The observer task and the victim task are assigned when

generating the task sets. In simulations, we consider a periodic

observer task because it represents the worst case attack

scenario for the adversary, as discussed in Section IV-A. Since

only the tasks with higher priorities influence the observations,

we skip the generation of lower-priority tasks lp(τo). Thus, the

observer task always has the lowest priority (i.e., prio = 1) in

these generated task sets. For the victim task, two conditions

are considered: (i) priv = 2 and (ii) priv = |hp(τo)|. This is to

test the two boundary conditions. Further, we set the coverage

ratio to be C(τo, τv) ≥ 1 when generating the task sets (except

for evaluating the impact of the coverage ratio), to evaluate

whether the algorithms can truly produce confident inferences

while the attacker has theoretical guarantees of the attack

capability (i.e., having full coverage of all pv time columns,

as per Theorem 2). The maximum construction duration λ is

set as per Section IV-B. Thus, λ = GCD(po, pv).
For varying the execution times of the tasks and adding

jitter to the inter-arrival times (for the sporadic tasks), we

use the normal and Poisson distributions respectively. Note

that Poisson distribution is used for inter-arrival time variation

because the probability of each occurrence (i.e., each arrival

of the sporadic task) is independent in such a distribution

model. First, a schedulable task set is generated (using the

aforementioned parameters). Then, for a task τi, the average

execution time is computed by wceti · 80%. Next, we fit a

normal distribution N (μ, σ2) for the task τi. We let the mean

value μ be wceti ·80% and find the standard deviation σ with

which the cumulative probability P (X ≤ wceti) is 99.99%.

As a result, such a normal distribution produces variation such

that 95% of the execution times are within ±10% ·wceti. To

ensure that the task set remains schedulable, we adjust the

maximum modified execution time to be equal to WCET if

it exceeds WCET. For sporadic tasks, the average inter-arrival

time is computed by pi · 120%. We use a Poisson distribution

with pi · 120% as its mean value to generate the varied inter-

arrival times during the simulation. Similarly, so as to not

violate the given minimum inter-arrival time for a sporadic

task, we regenerate the modified inter-arrival time if it drops

below pi.

B. Results

1) Attack Duration: Our first goal is to understand the

effects of how long attacks last. Recall that the coverage

of the schedule ladder diagram repeats every LCM(po, pv)
(Observation 2). Therefore, we use LCM(po, pv) as the unit of

time to evaluate the algorithms. Taking the Ardupilot software

as an example, the largest LCM of any real-time task (i.e., a

AP HAL thread) pairs is 20ms. While LCM(po, pv) varies

system to system, this gives us an insight into the scale of

LCM(po, pv). In this experiment, we generate task sets as

explained in Section VII-A and run the ScheduLeak algorithms

with a fixed duration of 10 · LCM(po, pv) for every task set.

Figure 7 shows the results of this experiment. In Figure 7,

each point of the inference precision ratio is the mean of the

individual inference precision ratios of 12000 task sets for

a given attack duration. The results suggest that the longer

the attack is sustained, the higher success rate and precision

ratio the algorithms can achieve. This is because a longer

attack time means more execution intervals are reconstructed

by the observer task. On the other hand, both success rate

and precision ratio plateau after 5 · LCM(po, pv) with the

success rate and the precision ratio higher than 97% and

0.99 respectively. This shows that the proposed algorithms can

98

0 1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%

 Inference Success Rate
 Inference Precision Ratio

Attack Duration (LCM(po,pv))

In
fe

re
nc

e
Su

cc
es

s
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io

Figure 7: The results of varying attack

duration. It indicates that longer attack

durations can increase the chance of suc-

cess and yield better inference precision.

The points are connected only as a guide.

0% 25% 50% 75% 100%
80%

85%

90%

95%

100%

Su
cc

es
s

R
at

e

The Proportion of Sporadic Tasks in a Task Set

 Success Rate
 Inference Precision Ratio

0.80

0.85

0.90

0.95

1.00

In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io

Figure 8: The impact of sporadic tasks. It

indicates that the algorithms perform bet-

ter with sporadic tasks, with a (slightly)

ascending trend as the proportion of spo-

radic tasks increases.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0%

20%

40%

60%

80%

100%

 Inference Success Rate
 Inference Precision Ratio

Coverage Ratio

In
fe

re
nc

e
Su

cc
es

s
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io

Figure 9: The performance of the algo-

rithms when C(τo, τv) < 1. Round and

triangular points represent the inference

success rate and the inference precision

ratio, respectively.

5
7

9
11

13
15

0.0
0.2

0.4
0.6

0.8
1.0

0.6

0.7

0.8

0.9

1.0

Task Set Utiliz
ation

In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io

Number of Tasks

Figure 10: The impact of the number

of tasks and the task set utilization.

It shows that the algorithms perform

better with small number of tasks and

high task set utilization.

0.0

0.2

0.4

0.6

0.8

1.0

5 7 9 11 13 15
0%

20%

40%

60%

80%

100%

 priv=2
 priv=|hp(To)|

In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io
Su

cc
es

s
R

at
e

The Number of Tasks in a Task Set

(a) Grouped by the number of tasks.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0%

20%

40%

60%

80%

100%In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io
Su

cc
es

s
R

at
e

Task Set Utilization

 priv=2
 priv=|hp(To)|

(b) Grouped by task set utilization.

Figure 11: The impact of the victim task’s position in a task set. It suggests that a

victim task with higher priority makes it hard for the algorithms to make a correct

inference. This result stands throughout different number of tasks in a task set as

well as different task set utilization. Also, a high priority victim task with low task set

utilization reduces the inference performance. This explains the huge drop in Figure 10.

produce inference with precision in a very short time and the

additional gains obtained from running longer are minuscule.

For this reason, we evaluate the algorithms with a duration of
10 · LCM(po, pv) for the rest of the experiments below.

2) The Number of Tasks and Task Set Utilization: Fig-

ure 10 displays a 3D graph that shows the averaged inference

precision ratio for each combination of the number of tasks

and the task utilization subgroup. The results suggest that

(i) the inference precision ratio decreases as the number of

tasks in a task set increases and (ii) the inference precision

ratio increases as the task set utilization increases. The worst

inference precision ratio happens when there are 15 tasks

in a task set with the utilization group [0.001, 0.1] – these

are boundary conditions for both the number tasks and the

utilization in this experiment. The impact of the number of

tasks is straightforward as having more tasks in hp(τo) means

that τo will be preempted more frequently. This makes it hard

for the observer task to eliminate the false time columns.

For the impact of the task set utilization, a low utilization

value implies that the execution times of the tasks are small

and there exists a lot of gaps in the schedule. Hence, the

observer may get many small and scattered intervals. Since

we let the algorithms pick the largest interval to infer the

true arrival column, multiple small intervals are problematic

– the algorithm has a hard time picking the right interval that

contains the true arrival. Hence errors are compounded.

3) Priority of the Victim Task: We analyze the impact of

the victim task’s priority in a task set. From Section VII-A,

we consider two boundary conditions for the victim task’s

position: (i) priv = 2 and (ii) priv = |hp(τo)|. Figures 11(a)

and 11(b) present the experiment results for the two conditions.

Figure 11(a) shows that the huge drop in Figure 10 (as the

number of tasks increases) is mainly caused by the condition

priv = |hp(τo)|. Figure 11(b) also shows the similar indication

that the drop in low utilization groups in Figure 10 is a result

of the condition priv = |hp(τo)|. It’s worth noting that, since

we use the rate-monotonic algorithm to assign the priority,

priv = 2 means that τv has a large period, hence potentially

has greater execution time. It benefits the algorithms as we

pick the largest interval to make an inference in the final step.

4) Sporadic and Periodic Tasks: We examine the impact

of the mix of sporadic and periodic tasks. We generate task

sets with 0%, 25%, 50%, 75% and 100% sporadic tasks in a

task set. The rest of the tasks in a task set are periodic tasks.

Comparing the result of all periodic tasks and the result of all

sporadic tasks shown in Figure 8, we find that the algorithms
perform better with more sporadic tasks. It shows an ascending

trend as the proportion of sporadic tasks increases. However,

99

the change in the performance is less than 1%, which is subtle.

Hence, our inference algorithms are fairly agnostic to the

actual mix of sporadic/periodic tasks in the system.

5) Coverage Ratio and The Maximum Reconstruction Du-
ration: The experiments above show that the algorithms

can reach certain inference success rates and precision when

C(τo, τv) ≥ 1 and λ = GCD(po, pv). However, attackers

may face a victim system where C(τo, τv) < 1. That is,

the observer task’s execution is not guaranteed to appear in

all pv time columns. To evaluate the performance of the

algorithms against such a case, we generate task sets with

0 < C(τo, τv) < 1 (thus λ = eo) and run the algorithms for a

duration of 10 ·LCM(po, pv). In this experiment, task sets are

grouped by coverage ratio from [0.001 + 0.1 · x, 0.1 + 0.1 · x]
where 0 ≤ x ≤ 9. Figure 9 shows the results. It suggests

that the attacker may fail to completely infer the victim task’s

initial offset when the coverage ratio is low. Yet, the algorithms

can still succeed in some cases due to the fact that Theorem 1

holds even with a low coverage ratio. When the observer

has about half coverage of the time columns (the group of

[0.401, 0.5]), it yields 59.9% in success rate and 0.819 for

the averaged inference precision ratio. As more time columns

are observed by the observer task, the precision and success

rate increase. This is because higher coverage ratios give the

algorithms a higher chance to capture the true arrival column

and remove others. As a result, the inference success rate is

about proportional to the coverage ratio.

VIII. DISCUSSION – POTENTIAL DEFENSE STRATEGIES

To defend against the proposed attack algorithms, one

strategy could be to enforce a low coverage ratio between any

low priority task and the critical real-time task by adjusting the

task parameters. This reduces the attacker’s observability/ca-

pability (based on results from Section VII-B5). Furthermore,

carefully designing and employing a harmonic taskset may

also reduce ScheduLeak’s inference precision since it creates

multiple candidates in the last step of the algorithms. However,

any change in the task parameters must fulfill both real-

time requirements as well as the required performance. Thus,

changing the task parameters may not always be applicable

in real-time systems especially the legacy systems that are

already deployed.

Since the proposed algorithms rely on the repeating patterns

of the victim task, a potential countermeasure is to perturb the

periodicity of the system schedule. Yet, the measure will not

be trivial due to the real-time constraints of real-time tasks. A

careless solution can easily cause some real-time tasks to miss

their deadlines and lead to a system failure. A randomization

protocol for a rate-monotonic scheduler presented by Yoon

et al. [19] is a good attempt on removing the scheduler side-

channel for RTS. However, their work is not applicable in our

case because they only focus on the systems with all periodic

tasks while our work is feasible on the systems with both

periodic and sporadic tasks (which is the case in most real-

time control systems). Therefore, an effective solution would

need to consider covering both task types.

IX. RELATED WORK

The problem of information leakage via side-channels has

been well studied in the literature. For instance, it has been

shown that cache-based side-channels can be invaluable for

information leakage [20], [21], [17], [18]. With the advent

of multi-tenant public clouds, cache-based side-channels and

their defenses have received renewed interest (e.g., [22], [23],

[24], [25]). Other types of side-channels such as differential

power analysis [26], electromagnetic and frequency analysis

[27], [28] have also been studied. Our focus here is on

scheduler side-channels in real-time systems.

There has also been some work on information flow via

schedulers. The problem where two tasks leak private infor-

mation by using a covert channel is studied [2], [3]. Völp

et al. [1], [29] examined covert channels between different

priorities of real-time tasks and proposed solutions to avoid

such covert channels. The methodologies for quantifying in-

formation leakage in schedulers are also studied [30], [31].

While the previous works focused on covert channels in

some schedulers, our focus is on novel side-channels in real-

time schedulers where an unprivileged low-priority task can

infer the execution timing behaviors of high-priority real-

time task(s). Also, in contrast to covert channels that rely

on actively preempting real-time tasks, the side-channel in

our work does not violate any real-time constraints and the

observer task only observes its own behavior.

The integration of security into real-time schedulers is a

developing area of research. Mohan et al. [32] offered a

consideration of real-time system security requirements as a

set of scheduling constraints and introduced a modified fixed-

priority scheduling algorithm that integrates security levels

into scheduling decisions. Pellizzoni et al. [11] extended the

above scheme to a more general task model and also proposed

an optimal priority assignment method that determines the task

preemptibility. Some researchers also have focused on defense

techniques for real-time systems (e.g., [33], [34], [35], [36],

[37], [38], [39]). However, these solutions do not protect the

systems from the ScheduLeak attack.

The most closely related solution is to adopt a random-

ization technique to obfuscate the schedule. Yoon et al. [19]

introduced a randomization protocol for a preemptive, fixed-

priority scheduler that works with only (fully) periodic tasks.

Krüger et al. [40] built upon this by proposing an online

job randomization algorithm for time-triggered systems. Nev-

ertheless, these solutions are not applicable to most real-

time systems in which a preemptive, fixed-priority scheduler

supports both periodic and sporadic real-time tasks. This

leaves those systems still vulnerable to our ScheduLeak attack.

X. CONCLUSION

Successful security breaches in control systems (including

cyber-physical systems) with real-time properties can have

catastrophic effects. In many such systems, knowledge of the

precise timing information of critical tasks could be beneficial

to adversaries. Our work in this paper demonstrates how to

capture this schedule timing information in a stealthy manner

100

– i.e., without being detected or causing any perturbations to

the original system. Designers of such systems now need to

be cognizant of such attack vectors and design the system to

include countermeasures that can thwart potential intruders.

The end result is that real-time systems can be more robust to

security threats overall.

APPENDIX

A. Algorithm for Reconstructing An Execution Interval

Algorithm 1 Reconstructing An Execution Interval

E(eo, e
′
o, λ)

{GT : global timer (system timer)}
{eo : the worst case execution time of τo}
{e′o : remaining execution time of present job of τo}
{λ : maximum reconstruction duration in a period}
{tstop : stop time when λ is met}
{t0, t−1 : present and last time stamps}
{tbegin, tend : start, end time of the detected interval}

1: t0 = GT
2: tbegin = t0
3: tstop = tbegin + e′o − (eo − λ)
4: duration = 0
5: while duration ≤ loop execution time unit and t0 <

tstop do
6: t−1 = t0
7: t0 = GT
8: duration = t0 − t−1

9: end while
10: if duration > loop execution time unit then
11: tend = t−1

12: else
13: tend = t0
14: end if
15: e′o = e′o − (tend − tbegin)
16: return {tbegin, tend, e′o}

Algorithm 1 takes the observer task’s worst case execution

time eo, the remaining execution time of the present instance

e′o and the maximum reconstruction duration λ as inputs.

It outputs the start time tbegin and end time tend of the

detected execution interval as well as the updated remaining

execution time of the present instance e′o. Lines 1 –4 initialize

the variables to be used by the algorithm. Specifically, line
3 computes the point in time (the stop condition) when the

algorithm reaches the given maximum reconstruction duration

λ for the present instance. Lines 5 – 9 are used to detect a

preemption and check if current time exceeds the computed

stop time point. These lines keep track of the time difference

between each loop by reading present time from a global

timer (i.e., a system timer) and comparing it to the time from

the previous loop. If the time difference exceeds what we

anticipate (the execution time of the loop), we know that a

preemption occurred (i.e., one or more higher-priority tasks

executed). The loop exits either when a preemption is detected

or the present time exceeds the computed stop time point.

Lines 10 – 12 determine the end time of the reconstructing

execution interval. If the loop exits because of a preemption,

the last time point before the preemption is taken as the

end time of that execution interval (line 11). Otherwise, no

preemption is detected, all λ duration is used up and the latest

time point is taken as the end time of the execution interval

(line 13). Line 15 updates the remaining execution time of

the present job for the next invocation. Line 16 returns the

reconstructed execution interval (its start time tstart and end

time tend) and the updated remaining execution time.

B. Schedule on A Schedule Ladder Diagram

To better understand the effectiveness of the schedule ladder

diagram in profiling the victim task’s behavior, we plot the

original schedule of Example 1 on the ladder diagram in

Figure 12 so that readers get a better sense of it. This is not

a part of our algorithms, but it gives us an insight into the

correlation of the behaviors between the observer task and the

victim task.

0816

…

2432
4048
5664
7280 = 8

(= 1)

Figure 12: The schedule of the task set in Example 1 plotted

on a schedule ladder diagram with a width of pv . It shows that

time columns [1, 3) are always occupied by either the victim

task or other higher priority tasks. Therefore, the execution

intervals of the observer task will not land on these time

columns where the true arrival column is enclosed. This fact

is what the proposed algorithms is based on.

101

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

and the shepherd for their valuable comments and sugges-

tions. The authors would also like to thank Jesse Walker

and Yeongjin Jang for their feedback on earlier versions of

the paper. This work is supported by the National Science

Foundation (NSF) under grant SaTC-1718952. Any opinions,

findings and conclusions or recommendations expressed in this

publication are those of the authors and do not necessarily

reflect the views of the NSF.

REFERENCES

[1] M. Völp, C.-J. Hamann, and H. Härtig, “Avoiding timing channels in
fixed-priority schedulers,” in Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security (ASIACCS),
2008, pp. 44–55.

[2] A. Ghassami, X. Gong, and N. Kiyavash, “Capacity limit of queueing
timing channel in shared fcfs schedulers,” in 2015 IEEE International
Symposium on Information Theory (ISIT), June 2015, pp. 789–793.

[3] J. Son and Alves-Foss, “Covert timing channel analysis of rate mono-
tonic real-time scheduling algorithm in mls systems,” in 2006 IEEE
Information Assurance Workshop, June 2006, pp. 361–368.

[4] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd ed. Springer Publishing
Company, Incorporated, 2011.

[5] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of the ACM, 1973.

[6] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[7] C. Tankard, “Advanced persistent threats and how to monitor and deter

them,” Network Security, vol. 2011, no. 8, pp. 16–19, 2011.
[8] N. Virvilis and D. Gritzalis, “The big four - what we did wrong in

advanced persistent threat detection?” in 2013 International Conference
on Availability, Reliability and Security, Sep. 2013, pp. 248–254.

[9] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
Paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.

[10] D. Isovic, Handling Sporadic Tasks in Real-time Systems: Combined
Offline and Online Approach. Mälardalen University, 2001.

[11] R. Pellizzoni, N. Paryab, M. Yoon, S. Bak, S. Mohan, and R. B. Bobba,
“A generalized model for preventing information leakage in hard real-
time systems,” in 21st IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2015, pp. 271–282.

[12] J.-S. Pleban, R. Band, and R. Creutzburg, “Hacking and securing the ar.
drone 2.0 quadcopter: investigations for improving the security of a toy,”
in IS&T/SPIE Electronic Imaging. International Society for Optics and
Photonics, 2014, pp. 90 300L–90 300L.

[13] F. Samland, J. Fruth, M. Hildebrandt, T. Hoppe, and J. Dittmann, “Ar.
drone: security threat analysis and exemplary attack to track persons,”
in Proceedings of The International Society for Optical Engineering
(SPIE), vol. 8301, 2012.

[14] The Linux Foundation. (2019, Jan.) The Real Time Linux Collaborative
Project. [Online]. Available: https://wiki.linuxfoundation.org/realtime/

[15] FreeRTOS. (2019, Jan.) The FreeRTOS Kernel. [Online]. Available:
http://www.freertos.org/

[16] jDrones. (2019, Jan.) ArduPilot Autopilot Suite. [Online]. Available:
http://ardupilot.org/

[17] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ Track at the RSA Conference.
Springer, 2006, pp. 1–20.

[18] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel.” IACR Cryptology ePrint Archive, vol. 2002, p. 169, 2002.

[19] M. Yoon, S. Mohan, C. Chen, and L. Sha, “Taskshuffler: A schedule ran-
domization protocol for obfuscation against timing inference attacks in
real-time systems,” in 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2016, pp. 1–12.

[20] W.-M. Hu, “Lattice scheduling and covert channels,” in Research in
Security and Privacy, Proceedings., IEEE, 1992.

[21] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel crypt-
analysis of product ciphers,” in European Symposium on Research in
Computer Security, 1998.

[22] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security
(CCS), 2012, pp. 305–316.

[23] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Fine grain cross-
vm attacks on xen and vmware,” in Big Data and Cloud Computing
(BdCloud), IEEE, 2014.

[24] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS), 2009, pp. 199–212.

[25] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the 34th Annual
ACM International Symposium on Computer Architecture (ISCA), 2007,
pp. 494–505.

[26] K. Jiang, L. Batina, P. Eles, and Z. Peng, “Robustness analysis of real-
time scheduling against differential power analysis attacks,” in 2014
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July
2014, pp. 450–455.

[27] C. C. Tiu, “A new frequency-based side channel attack for embedded
systems,” Tech. Rep., 2005.

[28] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em
side-channel(s),” in the 4th International Workshop on Cryptographic
Hardware and Embedded Systems, 2003.

[29] M. Völp, B. Engel, C. Hamann, and H. Härtig, “On confidentiality-
preserving real-time locking protocols,” in 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), April
2013, pp. 153–162.

[30] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam, “Mitigating
timing side channel in shared schedulers,” IEEE/ACM Transactions on
Networking, vol. 24, no. 3, pp. 1562–1573, June 2016.

[31] X. Gong and N. Kiyavash, “Quantifying the information leakage in
timing side channels in deterministic work-conserving schedulers,”
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1841–1852, Jun. 2016.

[32] S. Mohan, M. K. Yoon, R. Pellizzoni, and R. Bobba, “Real-time
systems security through scheduler constraints,” in 2014 26th Euromicro
Conference on Real-Time Systems (ECRTS), July 2014, pp. 129–140.

[33] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3A: Se-
cure system simplex architecture for enhanced security and robustness of
cyber-physical systems,” in Proceedings of the 2Nd ACM International
Conference on High Confidence Networked Systems (HiCoNS), 2013,
pp. 65–74.

[34] M. Yoon, S. Mohan, J. Choi, J. Kim, and L. Sha, “SecureCore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2013, pp. 21–32.

[35] M. M. Z. Zadeh, M. Salem, N. Kumar, G. Cutulenco, and S. Fischmeis-
ter, “SiPTA: Signal processing for trace-based anomaly detection,” in
Proceedings of the 14th International Conference on Embedded Software
(EMSOFT), 2014, pp. 6:1–6:10.

[36] M. Yoon, S. Mohan, J. Choi, and L. Sha, “Memory heat map: Anomaly
detection in real-time embedded systems using memory behavior,” in
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1–6.

[37] T. Xie and X. Qin, “Improving security for periodic tasks in embedded
systems through scheduling,” ACM Transactions on Embedded Comput-
ing Systems (TECS), vol. 6, no. 3, Jul. 2007.

[38] M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu,
“Static security optimization for real-time systems,” IEEE Transactions
on Industrial Informatics, vol. 5, no. 1, pp. 22–37, Feb 2009.

[39] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache side-
channel attacks and time-predictability in high-performance critical
real-time systems,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), June 2018, pp. 1–6.

[40] K. Krüger, M. Völp, and G. Fohler, “Vulnerability analysis and mit-
igation of directed timing inference based attacks on time-triggered
systems,” in 30th Euromicro Conference on Real-Time Systems (ECRTS),
2018, pp. 22:1–22:17.

102

