A Novel Side-Channel in Real-Time Schedulers

Chien-Ying (CY) Chen, Sibin Mohan, Rodolfo Pellizzoni,

Rakesh B. Bobba and Negar Kiyavash

25th IEEE Real-time And Embedded Technology And Applications Symposium (RTAS'19) April 17, 2019

This work is supported by the National Science Foundation (NSF) under grant SaTC-1718952.

Imagine you (an attacker) have control of a real-time task in an autonomous system

You want to take over control of the steering and throttle

Problem Statement

Goal: When do critical tasks arrive in the future?

Problem Statement

Different task initial offsets yield completely different schedules.

Problem Statement

Different task initial offsets yield completely different schedules.

System and Adversary Model

Uniprocessor, Fixed-Priority Hard Real-Time Systems

Requirements

- > The attacker knows the victim task's period
- The observer task has **lower priority** than the victim task.

Attack Goal

>Infer the victim task's initial offset and predict its future arrival time points.

Attack Scenario Overview

ScheduLeak Algorithms

The ScheduLeak Algorithms	Task ID	Period	Execution Time
	Task 4	15	1
2 Organize the execution intervals	Observer Task	10	2
in a schedule ladder diagram	Victim Task	8	2
	Task 1	6	1
$\iint_t + + + + + + + + + + + + + + + + + + +$			

Divide the timeline into sections of length = 8 (the victim task's period) and stack:

Task ID	Period	Execution Time
Task 4	15	1
Observer Task	10	2
Victim Task	8	2
Task 1	6	1

The ScheduLeak Algorithms	Task ID	Period	Execution Time
	Task 4	15	1
3 Infer the victim task's initial offset	Observer Task	10	2
	Victim Task	8	2
	Task 1	6	1

The victim task's future arrival times can be computed by

Task	Period
Observer Task	10
Victim Task	8

A ladder diagram with width = 8 (the victim task's period)

Task	Period
Observer Task	10
Victim Task	8

Task	Period
Observer Task	10
Victim Task	8

Coverage Ratio $C(\tau_o, \tau_v) = \frac{e_o}{GCD(p_o, p_v)}$

Simulation-based Performance Evaluation

Metrics

Inference Precision Ratio

the ratio of how close the inference to the true initial offset

Inference Success Rate

An inference is successful if attacker is able to exactly infer the victim task's initial offset

Variables

Experiment Result Highlights

Experiment Result Highlights

Conclusion

Thank you.

Demo videos are available at https://scheduleak.github.io/

This work is supported by the National Science Foundation (NSF) under grant SaTC-1718952 and ONR N00014-13-1-0707.

Backup Materials

Implementation and Attack Case Studies

Cache-timing side-channel attacks
FreeRTOS
Zedboard Xilinx Zynq®-7000
Hardware-in-the-loop UAV

- Interference with control (actuation signals) of CPS
 - ➢ Real-time Linux
 - ➢Raspberry Pi 3 Model B
 - >Ground rover/quadcopter

Coverage Ratio

Coverage ratio is defined as

$$C(\tau_o, \tau_v) = \frac{e_o}{GCD(p_o, p_v)}$$

The coverage ratio can be loosely interpreted as the proportion of the time columns covered by the observer task in the schedule ladder diagram.

If $C(\tau_o, \tau_v) \ge 1$, then the attacker can observe the victim task. Otherwise it is not guaranteed that the victim task is observable by the attacker.

Experiment Results

Experiment Results Observation Duration

Success rate and precision ratio are stabilized after $5 \cdot LCM(p_o, p_v)$

- Success rate: 97%
- Precision ratio: 0.99

Note: each data point represents the mean of 12000 tasksets for the given observation duration.

Experiment Results Number of Tasks & Taskset Utilization

the inference precision ratio **decreases** as the number of tasks in a task set **increases**.

The inference precision ratio **increases** as the task set utilization **increases**.

Note: The drop is mainly caused by a high priority victim task with low task set utilization. Observation duration is $10 \cdot LCM(p_o, p_v)$.

Experiment Results Proportion of Sporadic Tasks

The algorithms perform better with sporadic tasks, with a **ascending trend** as the proportion of sporadic tasks **increases**.

The change in the performance is **less than 1%**, which is subtle.

Note: 0% means a taskset contains no sporadic task (all periodic tasks). Observation duration is $10 \cdot LCM(p_o, p_v)$.

Experiment Results Coverage Ratio

Higher coverage ratio yields better success rate and inference precision.

The success rate is about 59.9% (precision ratio is 0.819) when the coverage ratio is around 0.5.

Note: Each data point represents the mean of 12000 tasksets. Observation duration is $10 \cdot LCM(p_o, p_v)$.