
SDCWorks: A Formal Framework for Software
Defined Control of Smart Manufacturing Systems

Matthew Potok∗, Chien-Ying Chen†, Sayan Mitra∗ and Sibin Mohan†
∗Dept. of Electrical and Computer Engineering, †Dept. of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{potok2,cchen140,mitras,sibin}@illinois.edu

Abstract—Discrete manufacturing systems are complex cyber-
physical systems (CPS) and their availability, performance, and
quality have a big impact on the economy. Smart manufacturing
promises to improve these aspects. One key approach that is
being pursued in this context is the creation of centralized
software-defined control (SDC) architectures and strategies that
use diverse sensors and data sources to make manufacturing
more adaptive, resilient, and programmable. In this paper, we
present SDCWorks—a modeling and simulation framework for
SDC. It consists of the semantic structures for creating models,
a baseline controller, and an open source implementation of a
discrete event simulator for SDCWorks models. We provide the
semantics of such a manufacturing system in terms of a discrete
transition system which sets up the platform for future research
in a new class of problems in formal verification, synthesis, and
monitoring. We illustrate the expressive power of SDCWorks by
modeling the realistic SMART manufacturing testbed of Uni-
versity of Michigan. We show how our open source SDCWorks
simulator can be used to evaluate relevant metrics (throughput,
latency, and load) for example manufacturing systems.

I. INTRODUCTION

The manufacturing industry represents 12% of the US GDP

[1]. One of the key performance indicators for a manufacturing

system is the Overall Equipment Effectiveness (OEE), captur-

ing the availability, performance and quality of the production

system. Worldwide studies indicate that the average OEE in

manufacturing plants is 60%, whereas world-class OEE is

considered to be greater than 85% [2]. One of the important

contributors to this low OEE is unscheduled downtime, caused

by random faults, machine degradation, and increasingly,

cyberattacks [3], [4], [5], [6], [7], [8].
One way to reduce this downtime and improve the overall

effectiveness and management of manufacturing systems is

to develop a global view of the system. Such a view will

enable (i) early detection of disruptions, (ii) timely isolation of

affected component(s) and even (iii) potential reprogramming

of parts of (or even the whole) system. Importantly, this cen-

tralized ability to reprogram the system based on a global view

also enables the system operator to quickly react to changing

demand, allowing for new parts to be introduced in an existing

manufacturing system, for improved profitability. We call our

approach software-defined control (SDC)1. The key idea of

We thank Kira Barton, Felipe Lopez, James Moyne and Miguel Saez for
many detailed discussions and providing valuable inputs on the SDC visions
and manufacturing systems. This work was supported by NSF CPS Frontier
grant NSF CPS 1544901.

1Inspired by the concepts from software-defined networking (SDN) [9].

SDC is to separate the logical (control) plane of decision
making from the management of the physical components
and sensory information for large-scale discrete manufacturing

systems. All the decision-making logic is combined in a single,

centralized control plane, called the “cyber-physical control

plane” or controller for short in this paper. The controller has

a global view of the entire system allowing it to orchestrate

the routing of physical parts and to schedule operations on

machines and conveyors on the factory floor. Although SDC is

inspired by SDN, there are several major differences between

the two approaches: physical components (akin to packets

being routed) have different properties – (i) the queue sizes

(buffers) are limited, (ii) we cannot just “drop” parts like we do

with SDN packets and (iii) the time scales are much different

– since manufacturing systems operate in the millisecond to

second ranges. Therefore, we cannot directly model/translate

SDN concepts to SDC.

Towards this vision, we present SDCWorks—a formal

modeling framework that captures different state components

of manufacturing systems, demarcated into plants and con-
trollers. Plants describe the floor plan of the factory – essen-

tially the various physical components that operate on the parts

being manufactured (that we call “parts” or “widgets” without

loss of generalization). Controllers are cyber components that

orchestrate the operations of the plant(s) and the movement

of parts2. While there exists significant work in the area

of modeling manufacturing systems (e.g., [10], [11], [12],

[13], [14], [15], [16]), none of them capture the cyber and

physical aspects of the system. Modern manufacturing systems

have significant complexity due to the interplay between the

software and hardware components. SDCWorks captures these

aspects at a level of abstraction that makes it both expressive

and useful for simulation and analysis. Additionally, with some

extensions, SDCWorks can function as a digital twin [17]

for a manufacturing system, simulating in parallel with an

operational system to optimize performance and detect faults.

SDCWorks has the power to express a wide variety of

discrete manufacturing systems. Models developed within

the SDCWorks framework can reap many benefits of rigor-

ous modeling: (i) computer-aided analysis and verification,

(ii) security analysis (detection of threats, attacks, etc. and

also developing countermeasures), (iii) ensuring that real-time

2Section III-B provides more details about each of these.

88

2018 9th ACM/IEEE International Conference on Cyber-Physical Systems

0-7695-6378-3/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCPS.2018.00017



timing requirements are met, (iv) synthesis of controller code

for some (or all parts) of the plant and (v) monitoring parts

through given plant layouts. This is akin to the results in the

SDN field where the controller (with its global view of the

system) can enable verification (e.g., [18], [19]), consistency

checks[20], [21], dependency checking [22], synthesizing net-

work updates [23], system updates [24], [25] and security [26]

to name just a few. We believe that rigorously developed

control architectures and strategies can significantly reduce

unscheduled downtime.

We use both a realistic testbed and a synthetic model for

evaluation and analysis (Section VII). We are able to record

the throughput, end-to-end time and load for varying product

manufacturing requirements and plant topologies.

Hence, the high-level contributions of this paper are:

1) SDCWorks, a formal modeling framework that can cap-

ture the cyber and physical properties of discrete manu-

facturing systems. [Sections III-B]

2) An illustration of the expressive power of the framework.

[Section V-B]

3) Implementation of a baseline controller to illustrate the

capabilities of SDCWorks. [Section IV]

4) An open source simulator for SDCWorks models. [Sec-

tion VI]

We first start with some background material and a descrip-

tion of the system model.

II. BACKGROUND: COMPLEXITY OF MODELING MODERN

MANUFACTURING

The physical part of a manufacturing system consists of

machines and material handling devices (e.g., robots and

conveyors). Machines and robots typically have their own low-

level controllers (these are denoted MC and RC in Figure 1).

Raw or unfinished parts arrive at the system, are transported

via material handling and exit the system in a finished state.

The system also has multiple Logic Controllers (LCs), often

implemented on PLC hardware. These LCs read data from sen-

sors and send commands to actuators. LCs are typically local

controllers that coordinate a physical region of a plant, called

a cell. The LCs enable the production process by sending the

right commands to the right actuators at the right times. Each

LC is typically paired with a Safety Controller (SC), a special

type of logic controller that, instead of enabling production,

prohibits the manifestation of unsafe behavior in the system.

This is primarily for humans interacting with the physical

system. For instance, if an emergency-stop button is pressed

then all of the machines, robots and conveyors within the

sphere of influence should stop as quickly (and safely) as pos-

sible. In current practice, these LCs and SCs are individually

programmed by control engineers, using templates and style

guidelines. Though these controllers may operate for years or

even decades due to exhaustive testing and experienced design,

this “distributed” style of programming makes the process of

managing and reconfiguring such systems difficult, error prone
and even insecure. For the purposes of this paper, the MCs,

RCs, LCs, SCs and the various machines are all part of the

‘plant’ while the ‘controller’ is as described in Section I – the

centralized controller that oversees/manages the entire system.

Figure 1: Tomorrow’s Manufacturing Control Systems.

III. SDCWORKS MODELING FRAMEWORK

A. Semantic Underpinnings

We will use variables to model different state components of

the plant and the controller. Each variable x has an associated

type denoted by type(x) that is the set of values that x can

take. Let X be a set of variables. A valuation for X is a

function that maps each variable x ∈ X to a value in type(x).
The set of all possible valuations of X is denoted by val(X).
Given a valuation x ∈ val(X), its restriction to a set of

variables, S ⊆ X , is denoted by x.S.

The overall system with a plant and a controller will be

modeled as a discrete transition system. Formally, a transition

system H is a tuple 〈X,Θ, A,D〉 where

(i) X is a finite set of variables partitioned into X = XC ∪
XP , sets of controller and plant variables; the set val(X)
of valuations of X is called the set of states;

(ii) Θ ⊆ val(X) is a set of initial states;

(iii) A is a finite set of actions partitioned into A = AC ∪AP

disjoint sets of controller and plant actions; and

(iv) D ⊆ val(X) × A × val(X) is the set of discrete state

transitions. An individual transition (x, a,x′) ∈ D is

written as x
a→ x′.

For a given state x ∈ val(X), x.XP and x.XC are said

to be the plant and controller state at xx. The plant variables

(XP ) are read/write variables for the plant actions (AP ) and

are only read by the controller actions (AC). That is, for

any x
a→ x′ with a ∈ AP , x.XC = x′.XC . Similarly,

the controller variables (XC) are read/write variables for the

controller actions (AC) and are only read by the plant actions

(AP ).

An execution of H is an sequence of states and transi-

tions with plant and controller transitions alternating: α =
x0, a1,x1, a2,x2 · · · , where x0 ∈ Θ and ai ∈ AC for odd

i and ai ∈ AP for even i in the sequence. A state x is

reachable if there exists an execution that ends in x. Any

set I ⊆ val(X) that contains all the reachable states of H

89



is called an invariant. Invariants capture properties that must

always hold for the system and can be stated in terms of plant

and controller variables.

B. SDCWorks Modeling Overview

An SDCWorks model is specified by the following three

components: (i) a plant that has a collection of cells where

each cell can perform certain operations; (ii) a set of parts

that move through the cells where each part is associated

with a requirement that defines the sequence of operations

that need to be performed on the part for it to be completed;

and (iii) a controller that orchestrates the operations at cells

and movement of parts. We formally describe each of these

components and the transition system model defined by these

components in the following sections.

C. Plant Description

The plant models the layout of cells and the connections

between them, and specifies the subset of operations from the

total set of operations, OP , that each cell can perform. There

are two special operation corresponding to creation (op�) and

removal (op⊥) of parts. We define OP = OP ∪ {op�, op⊥}.

Formally, a plant is specified by a tuple P =
〈GP ,LP ,TP ,QP 〉, where

(i) GP = 〈VP , EP 〉 is a graph of cells, where VP is the set

of cells and EP is the set of edges that defines the paths

for moving parts

(ii) LP : VP �→ 2OP maps each cell to the set of operations

that can be performed at that cell

(iii) TP : VP ×OP �→ N maps a cell v ∈ VP and an operation

op ∈ L(v) to TP (v, op), the total time (measured in

number of transitions) required to complete op at v
(iv) Q : VP �→ N maps each cell to its queue length Q(v),

the maximum number of parts that can be queued at v

For any graph and GP in particular, for any vertex v ∈ VP

next(v) and prev(v) denote the set of predecessors and

successors of v in GP .

Cells: A cell is any physical component of a plant where

some operation can be performed on a part such as machines,

conveyors, and etc. A cell can either be an individual compo-

nent or a set of multiple components.

Sources and Sinks: A source is a cell v ∈ VP such that

op� ∈ LP (v) and prev(v) = ∅. A sink is a cell v with op⊥ ∈
L(v) and next(v) = ∅. For simplicity, in this paper we assume

that there is a single source (v�) and a single sink (v⊥) in any

plant P and that L(v�) = {op�} and L(v⊥) = {op⊥}. A cell

in V that is neither a source nor a sink is an ordinary cell.

D. Parts and Requirements

For modeling convenience, we assume that there exists a

universal set W of unique identifiers for all parts that will

ever be seen by the manufacturing system. Let W� = {w ∈
W |loc(w) = v�} denote the set of parts that have not been

created yet, W⊥ = {w ∈ W |loc(w) = v⊥} denote the set of

parts that have been completed, and W◦ = W \ (W� ∪W⊥)
denote the set of parts that are currently in the system. For all

the results presented in the paper, a sliding window of unique

identifiers will be adequate. A possible implementation of this

is to attach a unique RFID tag on each part [27].

A requirement models a sequence of operations in OP
that need to be performed on each part for the part to be

considered completed. Formally, a requirement specifies a

directed acyclic graph (DAG) R = 〈VR, ER〉 and a labeling

function LR : VR → P(OP). For each requirement, there

is a single source, a vertex v ∈ VR with no incoming

edges and only one operation, op�, and at least one sink,

a vertex v ∈ VR with no outgoing edges and only one

operation, op⊥. A path of R is a sequence of vertices in

VR, π = v0, . . . , vk such that v0 is the source, vk is a sink,

and (vi, vi+1) ∈ ER for each i in the sequence. Given a

path π, we define LR(π) = LR(v0), . . . , LR(vk) which is

the corresponding sequence of operations in OP .

Example 1. Consider a manufacturing system with cells
VP = {v1, v2, v3} ∪ {v�, v⊥}. The plant is a graph GP =
(VP , EP ) as shown in the representation below. The circles
(machines) and squares (conveyors) represent individual cells.
For notational purposes, conveyors are shown as squares
through which the edges pass; however in the actual graph,
there are separate edges that lead into and from the conveyors
rather than just pass through them. This notation is used in
the remainder of the paper.

The operations that are supported by a cell v can be
obtained by LP (v), e.g., LP (v3) = {op2, op3}. Let’s further
consider two part types being fabricated in this plant. As-
suming requirement 1 requires to complete op1 and op2 and
requirement 2 requires to complete op1 and op3 in the given
order, then the requirements are denoted by R1 = {op1 →
op2} and R2 = {op1 → op3}, R = {R1, R2}.

v�

{op�}
v1

{op1} v2

{op2}

v3

{op2, op3}

v⊥

{op⊥}

Figure 2: The plant graph of a simple example.

E. Concepts related to plants and requirements

Each queue(v) has the following operations: head , returns

the element at the front of the queue; len , provides the current

length of the queue up to a maximum specified by Q(v); and

pop, removes and returns the element at the head of the queue

and decrements the len by one. Additionally, we define the

following notation: bag(v) := {w | loc(w) = v}; Bag :=
∪v∈V bag(v).

F. Discrete Transition System

We now describe the nominal plant and an abstract con-

troller. Additional variables may be added to this model, for

90



example, to implement specific controllers strategies and to

track more complex performance metrics.

Plant Variables: Figure 3 gives the names and types of the

plant variables (XP ). The variable loc returns the cell that a

part is currently located in. Initially, all parts are located at the

source, v�. Upon consumption at a sink, a part’s location is set

to v⊥. The plant variable pos assigns, for each part, w ∈ W◦
a natural number. If loc(w) ∈ V then pos ≤ Q(loc(w)) and it

is the actual position of w in the queue of loc(w) (otherwise,

w /∈ W◦ and pos(w) is meaningless). The variable queue is

the queue (array) of parts at that cell. As specified by the

plant P , for any cell v ∈ VP , the length of queue(v) is

upper bounded by Q(v). Initially, the queue is empty (i.e.,
all entries are set to ⊥). The variable requirement selects and

assigns a requirement R ∈ R to a part. The selection of R
will determine the set of operations that are performed on the

part. Finally, part time tracks the total time a part spent in

the plant starting from v� and ending at v⊥. All parts have

their part time initialized to 0.

1 Plant Variables:
loc : W �→ VP ∪ {v�, v⊥}

3 pos : W �→ N

queue : VP �→ Array[W ∪ ⊥]
5 requirement : R �→ W

part time : W �→ N, init ∀w ∈ Wpart time(w) := 0

Figure 3: Plant (XP ) variables and types.

Abstract Controller Variables: Figure 4 shows the list of

abstract controller variables: The variable action encodes the

actuation decision made by the controller for each cell v for the

following plant transition in which the cell v uses the decision

to perform some operation. The variable next tr specifies for

each cell v a neighboring cell to which v should transfer a part

when it receives a transfer action controller. The timer keeps

track of the current time of the overall system. A concrete

controller uses these and additional variables to make decisions

and keep track of the overall system state.

Abstract Controller Variables:

2 action : VP �→ OP
next tr : VP �→ VP

4 timer : N, init timer := 0

Figure 4: Abstract controller variables.

Plant Transitions: During each plant transition, all cells

are updated based on the decisions made by the controller.

These decisions are reflected in the controller variables such

as action that are read by the plant. The plant assigns one

of the following actions to each cell: move moves parts on

conveyors, op ∈ OP perform operation op at cells, op�
creates new parts at sources, op⊥ removes parts at sinks and

transfer moves parts between adjacent connected cells in the

plant. We now discuss these transitions in more detail.

If a conveyor cell v is provided with a move action, v
decrements the position of each of the parts in queue(v).

If a cell is given the OP action, the cell starts to perform

op on the part at the head of its queue. While this presumably

changes the local physical state of the plant and the part, in

our model, this action does not change any plant variables.

Instead, we will see later that once op completes then the

controller will update the record for the part.

If a source cell v is given the op� action, it selects a part

from w′ ∈ W� = bag(v�), the set of parts at the source,

v�, and assigns it a requirement R. This nondeterministic

choice models the uncertainty in the type of requirement that

is demanded from the next part. The location of the new part

w′ is set to be v� and its position is set to the end of its queue.

If a sink cell is given the op⊥ action, the cell will remove

the part from the head of its queue and the removed part’s

location is set to v⊥.

If a cell is given a noop action, the cell does not change

any of the variables.

If a cell is given a transfer action, the cell removes the

part at the head of its queue and reads the next tr variable to

determine the next cell to transfer the removed part. The cell

transfers the part to the next cell by changing the location of

the part to that of the next cell and the position to end of the

queue of the next cell.

Plant Transitions:
2 for each v ∈ VP

if action(v) = move then
4 for each w ∈ bag(v)

pos(w) := pos(w)− 1
6

if action(v) = op ∈ OP then
8 do(op)

10 if action(v) = op� then
w′ := choose bag(v�)

12 requirement(w′) := choose R ∈ R
loc(w′) := v

14 pos(w′) := len(queue(v))
part time(w′) := timer

16

if action(v) = op⊥ then
18 w′ := pop(queue(v))

loc(w′) := v⊥
20 part time(w′) := timer − part time(w′)

22 if action(v) = noop then
pass

24

if action(v) = transfer then
26 w′ := pop(queue(v))

loc(w′) := next tr(v)
28 pos(w′) := len(queue(next tr(v)))

Figure 5: Plant (XP ) transitions.

IV. BASELINE CONTROLLER

In this section, we present a basic centralized controller

strategy which is a refinement of the abstract controller of

Figure 4. Controllers make the following decisions: (a) plan

a sequence of operations according to the requirements of a

part, (b) map these operations on to appropriate cells, and

(c) orchestrate the movement and operation of the parts and

91



cells. In presenting the controller, we first introduce the formal

notion of a plan that encapsulates the first two pieces.

A. Plans and Feasible Graphs

Recall, given a requirement R and a plant P , GP =
〈VP , EP 〉 is the graph of cells for the plant and GR =
〈VR, ER〉 is the graph of the requirement. A plan C is

essentially a forward simulation relation from VR to VP [28].

That is, it is a relation C ⊆ VR × VP such that for any

(v1R, v1P ) ∈ C and (v1R, v2R) ∈ ER, there is a path π =
v1P , . . . , v2P in the plant graph, such that (a) (v2R, v2P ) ∈ C ,

and (b) LR(v2R) ∈ LP (v2P ). In other words, a plan relates

vertices in VR to vertices in VP so that each edge (v1R, v2R)
in the requirement graph can be simulated by paths in GP and

the first and the last vertices in the path are at cells that can

perform the operations required at (v1R, v2R).
The above definition of plan allows each operation in the

requirement R to be accomplished by traversing an arbitrary

but finite path (i.e., sequence of cells) in GP . A path corre-

sponding to a single edge in ER may revisit the same cell

in GP multiple times. We can show this using a standard

simulation argument [28]. Therefore, a plan gives a set of

feasible paths for achieving the requirement R in the plant P .

Proposition 1. There exists a plan C for a requirement R
and plant P if and only if for every path of GR there exists a
corresponding path in GP .

In order to obtain performance guarantees, concrete con-

trollers will restrict the family of paths. For example, for

every edge in (v1R, v2R) ∈ ER, the corresponding path

π = v1P , . . . , vkP in GR may be required to satisfy one of

these conditions:

• k-cell repetitions: each cell v ∈ GP may repeat in π at

most k times. For k = 1 this implies that a cell may be

visited at most once.

• k-op misses: the number of cells v such that LR(v2R) ∈
LP (v) is in the path is at most k. For k = 1 this implies

that there is only one cell v2P in π with LR(v2R) ∈
LP (v2P ) where the operation LR(v2R) is performed.

Given a C and path π in GR, the corresponding set of paths

in GP constructed from C are called the feasible paths of π.

The set of all the feasible paths corresponding to R in GP

is called the feasible graph and is denoted by FR,P . We now

proceed to describe our baseline controller that constructs and

uses a particular class of plans represented as feasible graphs.

B. Implementation of Baseline Controller

Controller Variables: Figure 6 gives the names and types of

our controller variables (Xp). Any variables that overlap with

the abstract controller variables take on the same definition as

before unless explicitly stated otherwise.

The controller variable completed keeps track of the se-

quence of operations that have been performed on each part.

Initially, it is the empty sequence for every part. The pointer
variable of a part is a pointer to a vertex in the feasible

graph FR,P corresponding to the same requirement as that of

the part. This variable keeps track of which operation should

currently be performed on a part at a particular cell and which

path through the plant to take. The variable start time marks

the start of a new operation by a cell and tracks how long a

particular operation has been ongoing. The wait time variable

monitors the amount of time a cell has been waiting for the

transfer action to move a part from the head of its queue.

A cell’s status denotes one of three current conditions of a

cell: idle, the cell is not working on any part; operational , the

cell is performing some op ∈ OP on a part at the head of the

cell’s queue; and waiting , the cell has completed op ∈ OP
and is waiting for a transfer action to move the part at the

head of its queue further along in the plant. The cost variable

maps a cell’s state to a real number which can be used to

choose between feasible paths in order to optimize with respect

to a cost metric (for example, energy, reliability, etc.).

Controller Variables:

2 action : VP �→ OP ∪ {move,noop}
can enqueue : VP �→ {T, F}

4 completed : W �→ OP∗

cost : VP �→ R

6 next tr : VP �→ VP

pointer : VP �→ VFR,P

8 start time : VP �→ N, init ∀v ∈ V start time(v) := 0
status : VP �→ {idle, operational,waiting}

10 timer : N, init timer := 0
wait time : VP �→ N

Figure 6: Controller (XC ) variables and types.

Controller Transitions: During each controller transition,

the controller first increments timer by 1 and performs the

following three major steps: (i) determines the shortest path in

each feasible graph FR,P according to the chosen cost metric;

(ii) updates each of the next tr and action variables for each

cell; and (iii) possibly updates the cost of each cell in the

plant. We discuss these steps in some more detail.

From the statically computed feasible graphs FR,P , the

controller runs a shortest path algorithm utilizing the recently

set costs to determine the best paths through the plant. The

controller iterates through each v ∈ V and first sets the

next tr variable to the the cell with the lowest cost from the

set next(v). Next, the controller determines the action that the

cell should take depending on its type. If the celltype(v) is a

conveyor cell, a move action is done unless there is a part

at the head of the queue; otherwise, the cell increments its

wait time by 1. If the type is a source cell, the controller

checks whether a part already exists in the cell’s queue. If so,

then the controller tries to transfer the part to the next cell;

otherwise, it instantiates a new part. If the type is an ordinary

cell, the controller cycles between the idle, operational , and

waiting states to determine the correct action. If a cell’s status

is idle, the controller tries to transfer the part immediately in

the case of a noop operation, performs an op action if there is

a part at the head of the queue, or does nothing. If the cell’s

status is operational , the controller assigns the action op to

the cell until the op has been completed at which point the

92



controller sets the cell’s status to waiting. If the cell’s status is

waiting , the controller tries to transfer the part. If the transfer

is successful, the controller changes the cells’s status to idle
and the cycle repeats. Additionally, regardless of state, if a

cell has space on its queue, it will try to enqueue a part from

an input conveyor with the largest wait time . If the type is a

sink cell, the controller instructs the cell to either terminate a

part at the head of the queue or do nothing.

C. Rigorous Reasoning about Properties

Our SDCWorks framework is designed to support rigorous

analysis of correctness and performance properties of the

system. The formal framework will support standard reasoning

in terms of invariants, abstractions, substitutivity and will be

eventually supported by computer-aided verification tools [29].

While a full verification of our baseline controller is reserved

for future papers, we present several key assertions and

arguments to sketch the outline of a correctness argument.

Additionally, the baseline controller we present here uses a

subset of the global view available to it and makes decisions

based on a local level. Much more complex controllers can

be implemented with SDCWorks such as those presented in

literature [30].

The following invariant captures the mutual exclusion prop-

erty and ensures that there is no “pile-up” of parts on cell and

conveyors.

Proposition 2. For any ordinary cell v ∈ VP \ {v�, v⊥}, and
any two distinct parts w1, w2 ∈ W , if w1, w2 ∈ bag(v) then
pos(w1) �= pos(w2).

This invariant is proved by induction on the length of any

execution of the H. The base case (an execution of length

0) holds vacuously, because at any initial state of H, all the

parts are at the source v�. For the inductive step, we check for

each possible plant and controller transition to verify that the

invariant is preserved. This involves a case analysis across all

the if conditions in Figure 5 and Figure 7. The can enqueue
variable restricts the transfer action from occurring unless

there is an empty space at the end of the queue for any cell.

The following invariant captures the correctness property

that ensures that only complete parts appear at the sink.

Proposition 3. For any sink v⊥, and any part w ∈ bag(v⊥),
the part is completed, i.e., completed(v) is a path in
requirement(w).

This invariant is derived from a stronger invariant that

captures the relationship between the completed(v) variable

and the position of the part and the feasible graph. Roughly, a

part w with requirement R follows a a feasible path from the

feasible graph FR,P . From Proposition 1 it follows that, as w
traverses the plant from a source v� to a sink v⊥ as specified

by the feasible path, it must follows a path in GR; therefore,

when it appears at v⊥ the part is complete.

The next proposition captures the property that all parts

complete within bounded time for any plant that is a directed

acyclic graph (DAG).

1 Controller Transitions:
timer = timer + 1

3 for each v ∈ VP

cost(v) := userDefinedCost(v)
5

for each Fr ∈ F
7 ShortestPathFirst(Fr)

9 for each v ∈ VP

next tr(pointer(v)) := argmin
v′∈next(pointer(v))

cost(v′)

11

if celltype(v) = conveyor then
13 if ∃w ∈ head(queue(v)) then

wait time(v) = wait time(v) + 1
15 else

action(v) = move
17

if celltype(v) = source then
19 if ∃w ∈ head(queue(v)) then

try transfer(v)
21 else

action(v) := op�
23

if celltype(v) = cell then
25 if status(v) = idle then

if ∃w ∈ head(queue(v)) then
27 if op(pointer(v)) = noop then

try transfer(v)
29 else

start time(v) := timer
31 status(v) := operational

action(v) := ⊕(pointer(v))
33 else

action(v) := noop
35 if status(v) = operational then

if timer − start time(v) >= T(v, op(pointer(v))
37 completed := completed + op(pointer(v))

status(v) := waiting
39 else

action(v) := op(pointer(v))
41 if status(v) = waiting then

try transfer(v)
43 if ∃w ∈ head(queue(v)) then

status(v) := idle
45 if can enqueue(v) then

v′ := maxwait time(prev(v))
47 action(v′) := transfer

49 if celltype(v) = sink then
if ∃w ∈ head(queue(v)) then

51 action(v) := op⊥
else

53 action(v) := noop

55 if len(queue(v)) < Q(v) then
can enqueue(v) = T

57 else
can enqueue(v) = F

59

func try transfer(v)
61 if can enqueue(next tr(v)) then

action(v) := transfer
63 next tr(v) = next tr(pointer(v))

else
65 action(v) := noop

Figure 7: Controller (XC ) transitions.

Proposition 4. For any acyclic requirement and any part w ∈
Vo, there exists a k > 0 such that if part time(w) ≥ k then
w ∈ bag(v⊥).

Since GP has finite depth in this case, the property is

established by showing that w traverses an edge from loc(w)
in the plant graph GP in finite time. For plants with cycles,

93



this property may not hold with our baseline controller as parts

may deadlock.

V. MODELING A REALISTIC MANUFACTURING TESTBED

To demonstrate the expressive power of our modeling

framework we present a formal model of the System-level

Manufacturing and Automation Research Testbed (SMART),

a realistic testbed at the University of Michigan.

A. SMART System Overview

SMART is a hybrid serial-parallel line manufacturing

testbed at University of Michigan [31] (see Figure 8) with

three manufacturing blocks and two conveyor lines connected

with a controllable pneumatic diverter. In total, there are three

industrial robots and four CNC milling machines spread across

the three manufacturing blocks.

Blocks 1 and 2 each contain two CNC machines and a

six degree of freedom robotic arm. Block 3 contains the

third robotic arm in the system that is used for additive

manufacturing. Each of the CNCs are controlled by a PLC

and are programmed to perform operations based on the inputs

from central controller (the baseline controller in our model).

The robotic arms are programmed to transfer parts between

the conveyor and the CNCs one at a time. Blocks 1 and 2 are

linked with a single conveyor line. The conveyor from Block

2 branches out into two conveyors that lead to either Block 1

or 3. There is a diverter at the conveyor fork that determines

which branching conveyor a part should take.

The SMART system has various sensors for gathering plant

and part state information: (i) a camera system to capture

images of the parts, (ii) RFID transceivers and seven proximity

sensors to locate parts, (iii) energy consumption monitors for

the conveyors, robotic arms, and one of the CNCs, (iv) state

monitors for the robotics arms and CNCs to capture position,

velocity, load, and etc. data. Each part is labeled with an RFID

tag with a unique ID. The re-write capabilites of the RFID

tags allow information to be stored in the tags such as the

completed variable.

B. Modeling SMART System

With minor adjustments, the SMART system can be mod-

eled within the SDCWorks framework (refer to Figure 10).

We consider Block 3 as the entry and exit point for parts

(there are two bins, one with the raw materials and another for

completed parts). The robotic arm in Block 3 can transfer raw

material from the raw materials bin onto the conveyor. This

action corresponds to the creation of a new part at the source

node. When a completed part reaches Block 3, the robotic arm

transfers the part from the conveyor into the completed bin.

This action corresponds to the consumption of a completed

part at a sink node. To fit our model constraints, Block 3 is

split into two distinct cells, a source cell v� and a sink cell

v⊥. Each of the CNC machines are modeled as individual cells

with their operations listed in Table IV. The robotic arms in

Blocks 1 and 2, and the diverter are modeled as cells with

only a noop operation

Figure 8: Layout of the SMART testbed.

Figure 9: Machine cells and conveyors.

Table I: Time TP for each CNC machine to complete operations.

CNC 1 (v4) CNC 2 (v5) CNC 3 (v6) CNC 4 (v7)

op1 20 25 35 –

op2 50 30 – 10

op3 25 – 15 30

op4 – 10 25 30

* all values are scaled to transition time ticks

* “–” indicates that the operation is not supported on this machine

Table II: Operation requirements. Three requirements are considered
in the case study in SMART.

Operations

R1 op� → op1 → op2 → op3 → op4 → op⊥
R2 op� → op1 → op3 → op1 → op⊥
R3 op� → op2 → (op3 , op4) → op1 → op⊥

We consider three types of parts that can be manufactured

94



v1{ }

v�{op�}

v⊥{op⊥}

Block 1

v2{ }

v4 {op1, op2, op3}

v5 {op1, op2, op4}

Block 2

v3{ }

v6 {op1, op3, op4}

v7 {op2, op3, op4}
Block 3

Figure 10: The graph representation of SMART for the formal model.

in the SMART system. The requirements for each part type

are given in Table II. The symbol “–” indicates that the

operation is not supported by the corresponding CNC machine

in that column. All operations specified in the table must be

completed in the order they shown.

Requirement 1 (R1) requires a sequence of four unique

operations. Requirement 2 (R2) only requires two unique

operations but demands that operation op1 is performed twice.

Requirement 3 (R3) requires three operations but allows for

the second operation be either op3 or op4.

VI. SDCWORKS SIMULATOR

We have developed a flexible, open source, discrete event

simulator capable of simulating arbitrary SDCWorks models.

The simulator is developed in Python3 and uses the Graphviz

and Matplotlib libraries to visualize all outputs. The simulator

is available for download at https://github.com/SDC-UIUC/

synthesis.

The SDCWorks simulator takes as input plant and require-

ment files specified in the YAML format. The plant input file

specifies all the cells, the operations each cell supports, and

the time it takes each operation to complete for a particular

cell. The requirement input file specifies all the requirements

to run against the plant. Each requirement contains a list of

nodes with a single operation and a list of edges to link the

nodes. Examples of both types of input files can be found in

the link above.

During an execution, the simulator first parses the user input

and creates graphs of the input plant and requirement graphs in

the DOT language. Each graph is written to a PNG file to allow

users to visually verify that the simulator constructed the plant

and requirement graphs correctly. Next, the simulator executes

the system for a specified amount of time using the baseline

controller (others can be coded). To make the system run

deterministically, the sources assign requirements to parts in a

round-robin fashion whenever parts are instantiated. At every

time step, the simulator moves parts through the plant, updates

the states of each cell and logs various metrics: throughput,

end-to-end delay, and the number of live parts in the plant at

a given time. Finally, the simulator outputs a log file with the

state of every cell in the system and all live parts at every time

step and plots all the metrics listed above.

VII. CASE STUDY

In this section we use a synthetic linear model and its

variant as examples to demonstrate the use of the SDCWorks

modeling framework. We also carry out an analysis using the

simulator described in Section VI.

A. A Synthetic Linear Model

Let’s consider a simple linear manufacturing system

consisting of five cells, V = {v1, v2, v3, v4, v5}. This plant

contains a fork that provides multiple path options for

dynamic allocation and support for fabricating multiple types

of parts. The plant is represented as a graph (Figure 11). The

supported operations and the time for each cell to complete

designated operations are listed below:

Table III: Time TP for each cell to complete operations.

v1 v2 v3 v4 v5

op1 10 – – – –

op2 – 20 – – –

op3 – – 40 35 –

op4 – – – 50 –

op5 – – – – 15

* all values are scaled to transition
time ticks

* “–” indicates that the operation is
not supported on this machine

Let’s consider three types of parts to be fabricated in this

plant, each with its own corresponding requirement denoted by

R = {R1, R2, R3}. These requirements are listed in Table V.

Requirement 1 is a typical linear manufacturing process that

requires the parts to visit all the cells in one of the paths in

the plant. Requirement 2 shows a different set of operations

requiring some cells to be bypassed. Requirement 3 has an

option for the system to choose a path that satisfies one of the

operation requirements (i.e., either op4 or op5 at the second

stage). These types of requirements are not uncommon since

different models of machines can perform the same work on

the parts albeit with different tools.

The above plant and requirements are converted into YAML

files as input for the simulator. During simulation, one part

is placed at the entrance (i.e., v�) at every other tick, as

introduced in Section VI. Each part appears at the entrance and

v�

{op�}
v1

{op1}
v2

{op2} v3

{op3, op4}

v4

{op5} v5

{op6}
v⊥

{op⊥}

Figure 11: The plant graph of the linear model case.

95



(a) Throughput of each part (JPH). (b) End-to-end time of each part. (c) Total alive parts in the plant.
Figure 12: Experiment results for the plant shown in Figure 11.

(a) Throughput of each part (JPH). (b) End-to-end time of each part. (c) Total alive parts in the plant.
Figure 13: Experiment results for the plant that has an additional cell, v6, as shown in Figure 14.

Table IV: Time TP for each CNC machine to complete operations.

CNC 1 (v4) CNC 2 (v5) CNC 3 (v6) CNC 4 (v7)

op1 20 25 35 –

op2 50 30 – 10

op3 25 – 15 30

op4 – 10 25 30

* all values are scaled to transition time ticks

* “–” indicates that the operation is not supported on this machine

Table V: Operational requirements for the linear model.

Operations

R1 op� → op1 → op2 → op3 → op6 → op⊥
R2 op� → op2 → op5 → op⊥
R3 op� → op1 → (op4 or op5) → op6 → op⊥

is assigned a requirement from {R1, R2, R3} in a round-robin

fashion. We run the simulation for 10000 ticks (we assume

that each tick represents one second in this experiment). The

simulation results are shown in Figure 12.

The results suggest that the throughput stabilizes after 5000
ticks. The throughput for all three requirements converges to

around 50JPH to 60JPH (JPH stands for jobs-per-hour,

a common metric in manufacturing systems). Although the

arrival rate of the parts can potentially be higher (because

one part is introduced into the system at every tick, the

maximum arrival rate is 3600/hour for three requirements

and 1200/hour for each requirement), the actual throughput

is constrained by the bottleneck at v4 with op5 that takes 50s

to complete the operation. Hence, the throughput upper bound

on this node is 3600/50 = 72JPH . As it is a mandatory path

for R2, the throughput of the nodes and edges on the path for

R2 before this v4 is also limited by its throughput 72JPH .

Note that the actual throughput for R2 is lower than the upper

bound throughput of v4, as shown in Figure 12(a), because v4
is shared between R2 and R3.

B. A Variant Model

From the previous example, we observed that the throughput

is constrained by v4. A reasonable method to increase the

throughput is to add another cell that supports the same

operation, op5. To alleviate the bottleneck at v4, a new cell

v6 is added with the same capabilities as v4. The updated

plant is shown as a graph in Figures 14.

We keep the set of requirements and other configurations the

same as the previous case for comparison. The plant with v6
is then fed into the simulator for experimentation. The results

are shown in Figure 13.

From the simulation, we can observe that the throughput for

all three requirements increases since the original bottleneck is

removed after adding additional supports for op5. As a result,

the end-to-end time for R2 (i.e., the requirement that requires

op5) decreases significantly. Also, the total alive parts slightly

grows in this case because the capacity (i.e., additional space

for parts to sit in) of the plant increased with the addition

96



v�

{op�}
v1

{op1}
v2

{op2} v3

{op3, op4}

v4

{op5} v5

{op6}

v6

{op5}

v⊥

{op⊥}

Figure 14: The graph for the plant introduced in Section VII-A with
an additional cell, v6, added.

of another cell. It’s worth noting that v3 becomes the new

bottleneck in the modified setup as its support for op3 has the

highest time cost, which causes the congestion on the path

containing it.

VIII. CONCLUSION

Future manufacturing systems will be composed of com-

plex software and manufacturing plants that work in close

coordination with each other. They will have to deal with

failure, changing requirements, security threats, etc. Hence,

a system that has a global view of the overall system will be

invaluable for managing such systems. SDCWorks provides

a mechanism for modeling and analysis of such systems.

We envision that it will engender a new set of research

problems in synthesis, verification, monitoring, fault-tolerance

targeting manufacturing and more general software-defined

control systems.

REFERENCES

[1] The Executive Office of the President, “Making in America: U.S.
manufacturing entrepreneurship and innovation,” White House, Tech.
Rep., June 2014.

[2] M. Ahmad and N. Dhafr, “Establishing and improving
manufacturing performance measures,” Robotics and Computer-
Integrated Manufacturing, vol. 18, no. 3–4, pp. 171
– 176, 2002, 11th International Conference on Flexible
Automation and Intelligent Manufacturing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0736584502000078

[3] National Cybersecurity and Communications Integration Center, “Ics-
cert year in review,” Department of Homeland Security, https://ics-
cert.us-cert.gov/, Tech. Rep., 2014.

[4] T. McDermott and A. Wolfson, “Manufacturing – a
persistent and prime cyber attack target,” Cohn Reznick,
http://www.cohnreznick.com/manufacturing-persistent-and-prime-
cyber-attack-target, Tech. Rep., September 26 2014.

[5] K. Zetter, “A cyberattack has caused confirmed physical damage for the
second time ever,” Wired, January 2015.

[6] K. Hon, “Performance and evaluation of manufacturing systems,” CIRP
Annals-Manufacturing Technology, vol. 54, no. 2, pp. 139–154, 2005.

[7] P. Jonsson and M. Lesshammar, “Evaluation and improvement of
manufacturing performance measurement systems-the role of oee,” In-
ternational Journal of Operations & Production Management, vol. 19,
no. 1, pp. 55–78, 1999.

[8] M. M. Ahmad and N. Dhafr, “Establishing and improving manufacturing
performance measures,” Robotics and Computer-Integrated Manufactur-
ing, vol. 18, no. 3, pp. 171–176, 2002.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[10] A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri nets in
manufacturing systems: modeling, control, and performance analysis.
IEEE, 1995.

[11] R. G. Askin and C. R. Standridge, Modeling and analysis of manufac-
turing systems. John Wiley & Sons Inc, 1993.

[12] C. G. Cassandras, Discrete event systems: modeling and performance
analysis. CRC, 1993.

[13] M. Zhou and K. Venkatesh, Modeling, simulation, and control of flexible
manufacturing systems: a Petri net approach. World Scientific, 1999,
vol. 6.

[14] S. Jain, N. Fong Choong, K. Maung Aye, and M. Luo, “Virtual
factory: an integrated approach to manufacturing systems modeling,”
International Journal of Operations & Production Management, vol. 21,
no. 5/6, pp. 594–608, 2001.

[15] J. Ezpeleta, J. M. Colom, and J. Martinez, “A petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE transactions
on robotics and automation, vol. 11, no. 2, pp. 173–184, 1995.

[16] A. Negahban and J. S. Smith, “Simulation for manufacturing system
design and operation: Literature review and analysis,” Journal of Man-
ufacturing Systems, vol. 33, no. 2, pp. 241–261, 2014.

[17] M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, un-
desirable emergent behavior in complex systems,” in Transdisciplinary
Perspectives on Complex Systems. Springer, 2017, pp. 85–113.

[18] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication. ACM, 2012, pp. 323–334.

[19] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[20] W. Liu, R. Bobba, S. Mohan, and R. Campbell, “Inter-flow consistency:
Novel sdn update abstraction for supporting inter-flow constraint,” in
NDSS Workshop on Security of Emerging Networking Technologies
(SENT), 2015.

[21] W. Liu, R. B. Bobba, S. Mohan, and R. H. Campbell, “Inter-flow
consistency: A novel sdn update abstraction for supporting inter-flow
constraints,” in 2015 IEEE Conference on Communications and Network
Security (CNS), Sept 2015, pp. 469–478.

[22] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks. ACM, 2013, p. 20.

[23] A. Noyes, T. War, P. Cerny, and N. Foster, “Toward synthesis of network
updates.” in Proceedings of Workshop on Synthesis (SYNT), July 2013.

[24] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking. ACM, 2013, pp. 49–54.

[25] S. Ghorbani and M. Caesar, “Walk the line: consistent network updates
with bandwidth guarantees,” in Proceedings of the first workshop on Hot
topics in software defined networks. ACM, 2012, pp. 67–72.

[26] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 1, pp. 623–654, Firstquarter 2016.

[27] G. Q. Huang, Y. Zhang, and P. Jiang, “Rfid-based wireless manufacturing
for real-time management of job shop wip inventories,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 36, no. 7,
pp. 752–764, 2008.

[28] N. A. Lynch and F. W. Vaandrager, “Forward and backward
simulations – part I: untimed systems.” Information and Computation,
vol. 121, no. 2, pp. 214–233, September 1995. [Online]. Available:
citeseer.nj.nec.com/lynch95forward.html

[29] N. Lynch and M. Tuttle, “An introduction to Input/Output automata,”
CWI-Quarterly, vol. 2, no. 3, pp. 219–246, September 1989.

[30] T. T. Johnson and S. Mitra, “Safe and stabilizing distributed multi-path
cellular flows,” Elsevier, February 2015.

[31] I. Kovalenko, M. Saez, K. Barton, and D. Tilbury, “Smart: A system-
level manufacturing and automation research testbed,” vol. 1, p.
20170006, 10 2017.

97


