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Abstract— Digital Twin (DT) is one of the key enabling
technologies for realizing the promise of Smart Manufacturing
(SM) and Industry 4.0 to improve production systems operation.
Driven by the generation and analysis of high volume data
coming from interconnected cyber and physical spaces, DTs
are real-time digital images of physical systems, processes or
products that help evaluate and improve business performance.
This paper proposes a novel DT architecture for the real-
time monitoring and evaluation of large-scale SM systems.
An application to a manufacturing flow-shop is presented to
illustrate the usefulness of the proposed methodology.

I. INTRODUCTION

Current trends in information and communication tech-

nologies gave rise to Cyber-Physical Systems (CPS) which

manage interconnected physical assets and computational

capabilities of a system. These transformative technologies

enable the possibilities promised by Smart Manufacturing

(SM) and industry 4.0, to track and use process data up and

down the supply chain. More effective autonomous smart

factories, with the ability for self-management and self-

optimization, can be achieved through the large interconnec-

tion of CPS. This class of systems are able to communicate,

perceive their environment, interpret information, and act on

the physical world [1]. Despite these prospects, modeling

and real-time control methods of CPS still face two main

challenges: (i) lack of models that can accurately replicate

the dynamics of physical systems while incorporating real-

time manufacturing data; and (ii) lack of real-time opti-

mization and control algorithms to generate effective on-line

production control actions based on real-time manufacturing

data and performance prediction [2]. We use Digital Twin

(DT) technology which bridges the physical and digital

worlds to handle the first challenge and provide a means

to address the second one. DT refers to a digital equivalent

of physical products, assets, processes or systems. It is

used for describing and modeling the corresponding physical

counterpart in a digital manner [3]. It combines modeling,

simulation, and emulation technologies with other analytics

to better understand aspects of current manufacturing op-

erations (e.g., health monitoring) or to predict aspects of

future behaviors of the manufacturing system (e.g., predictive
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maintenance) [4], [5]. The adoption of the Industrial Internet

of Things (IIoT) technologies has played an important role

in making DTs cost-effective to implement. IIoTs enable

ubiquitous connectivity that allows systems to report their

status, working conditions, and ambient environments to the

DTs so that the latter can remain in lock-step with their

physical counterparts. This capability allows the DTs to

provide an up-to-date representation of the SM system.

The main contribution of this paper is to introduce a

unified DT modeling framework for SM systems. The role

of the DT framework is to provide a real-time extensible

global view of a manufacturing system by deploying multiple

DTs at multiple levels of the automation pyramid of the

International Society of Automation ISA–95 [6]. The DT

framework is used within the Software-Defined Control (Fig.

1), where it operates with a set of applications and a decision

maker to monitor, control, predict, and re-configure (as

necessary) complex production processes. The DTs within

the framework are organized in a class structure to provide

capabilities that are important to the optimization of the man-

ufacturing environment; instances are stored in a DT pool

with a DT manager handling the communication between DT

instances and with the decision maker. Four classes that are

important to most manufacturing environments are defined.

The rest of this article is structured as follows. Section

II provides background on the research related to this work.

Section III introduces the DT platform providing details of its

components and how they are related. Section IV describes

four DT classes that are typically needed to build a real-time

global view of a given SM system. Section V demonstrates

the usefulness of the proposed approach through a case

study using a manufacturing flow-shop example. Section VI

summarizes the contributions of this paper and presents some

challenges related to the development of DTs.

II. BACKGROUND

A. Related Work

Digital modeling and simulation technologies have be-

come widely used in many engineering domains thanks to

the ubiquitous connectivity of devices and the amount of

data being moved between these devices or through the

cloud. DT-related methodology and technology are being

applied in different industrial fields and are showing great

potential. Industrial applications of DTs mainly focus on the

areas of product design, production, Prognostic and Health

Management (PHM), and human-machine interaction, where

DTs have shown superiority over traditional solutions [4],
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[7], [8], [9], [10], [11], [12]. Tao et al. presented a DT-

based method for product design connecting the physical

and virtual products to improve product customization [8].

Schleich et al. highlighted a DT reference model that enables

quality evaluation to ensure that the required geometrical

features of the product are satisfied regardless of the presence

of geometrical part deviations [9]. The DT concept has been

introduced into the production floor to make manufacturing

systems more dependable and flexible. A DT conceptual

framework was developed in [10] for monitoring and opti-

mizing physical manufacturing workshops based on context

data. Bottani et al. developed a cyber-physical automated

guided vehicle DT to improve material handling operation

in Job-Shop manufacturing systems [11]. In the field of

PHM, DTs have been used to predict the time at which a

system will no longer operate as envisioned and meet the

desired performance. Tao et al. proposed a DT method that

depicts geometry, physics, and behavior of an equipment

to detect environment disturbances, potential faults in the

equipment and defects in the models [13]. A structural

modeling concept, the airframe DT, was proposed in [12] to

design, maintain, reduce uncertainty, and improve robustness

of airframes. Some studies have also investigated the connec-

tions between humans and DTs in production area. A DT

approach that enables the communication and coordination

of operators with the production system was proposed in

[14]. Such DTs facilitate the integration of humans in the

decision-making process for self-controlling systems.

Most of these approaches focus on using DTs to solve

a particular problem (e.g., equipment health monitoring,

product design, system design, quality evaluation). However,

a unified DT framework to be used in multiple coordi-

nated applications (PHM, scheduling/dispatching, rerouting,

self-organization and optimization, etc.) is still needed. In

this paper, we propose a unified DT platform that oper-

ates within a Software-Defined Control (SDC) framework

for flexible control reconfiguration of smart manufacturing

systems. The proposed DT platform uses historical and

real-time data to provide the SDC controller with a cen-

tralized view that is used to provide comprehensive DT

capabilities such as to predict and detect anomalies, monitor

equipment health, monitor production in real-time, optimize

scheduling/dispatching, improve the system self-organizing

and learning, and propose novel control plans.

There exist some commercial frameworks that use plant

simulation software to understand the impact of performed

actions or boundary conditions in production systems. Ulti-

mately these frameworks allow for more informed decision

making based on operations visualization. For the sake of

brevity, we consider Tecnomatix from Siemens, AutoMod

from Applied Materials, and Emulate3D from Rockwell

automation. These software solutions focus on simulating the

physical system and use that simulation to predict behavior,

whereas our approach subsumes their capabilities and ad-

dresses the more general problem of simulation/emulation

of a physical system or a process. Our solution does not

require the physical simulation of the system. Thus, solutions

Fig. 1: Overview of the SDC framework.

provided by plant simulation software could be incorporated

into our DT framework, but cannot represent the entire scope

of DTs within this framework.

B. Software-Defined Control

The SDC is a framework that enables flexible control of

smart manufacturing systems [15], [16]. SDC employs a

global view of the SM system, including physical compo-

nents and cyber components to help improve manufacturing

productivity, efficiency, quality, and security. In building

this global view, the SDC consolidates data at the con-

trol, operations, and business levels to support operations

management with control reconfiguration recommendations.

The SDC consists of a set of centralized data management

infrastructures, a central controller, and a set of applications

(Fig. 1). The data management infrastructures are used to

store data consolidated from the plant floor, operations man-

agement, and business levels. The central controller, the key

piece of SDC, uses the consolidated data to generate a real-

time global view of the manufacturing system. Applications

such as anomaly detection, rerouting, planning, etc., use this

global view to support the central controller in its tasks.

The separation of the applications plane from the central

controller allows easier incorporation of third-party applica-

tions and algorithms without affecting the system design. The

information flow within the central controller is supported by

the SDC interfaces. A southbound interface is used for the

collection and transformation of plant floor data by means

of unified and standardized protocols (e.g., MTConnect and

OPC UA) prior to its use by the DTs and data analytics. A

northbound interface enables communication between SDC

applications and the central controller. An eastbound inter-

face is used for communications with the MES and the ERP,

and allows system administrators to configure and manage

the central controller. The central controller consists of a

decision maker, data services and a DT platform. The deci-

sion maker determines the recommendations to transmit to

the MES. Data services manage the information flow to and

within the central controller and offer two services: (i) the

data collection service used for requesting specific data to be

collected (from the plant floor) by the southbound interface,

and (ii) the data processing service used for accessing data
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Fig. 2: Overview of the DT platform inside the SDC. A DT class can have multiple DT instances deployed in the DT pool.

through the southbound interface and the database. The DT

platform hosts DTs of the system that are used to identify

the changing conditions and predict the effect of suggested

configurations before their deployment.

III. THE DIGITAL TWIN PLATFORM

The proposed DT platform provides the SDC framework

with the capability to construct aspects of a global view of

the SM system that could be used for multiple purposes (e.g.,
real-time monitoring, anomaly detection/prediction, real-time

optimization, etc.). The DT platform provides real-time

modeling of the manufacturing system at multiple levels of

the ISA-95 standard. Different model types are incorporated

into the DT platform. Models are built at the machine

and system levels considering the continuous, discrete, and

hybrid behaviors at each level. They also merge physics-

based and data-driven knowledge to improve analysis.

The architecture of the DT platform is shown in Fig. 2.

It mainly consists of a DT pool and a DT manager. The

DT pool hosts instances of different classes of DTs inter-

connected via a publish-subscribe (pub-sub) infrastructure1.

The DT manager manages the DT mission by handling

initialization of the DT pool, coordinating the pub-sub com-

munication across DT instances, handling the application

requests from the Northbound API Handler, and coordinating

the interaction with the decision maker.

A. Digital Twin Pool

As mentioned earlier, DTs are digital equivalents of phys-

ical products, assets, processes, and systems, which we refer

to as DT classes. A DT class can be instantiated multiple

times and be deployed in the DT platform as DT instances.

For example, the machine asset DT class can have multiple

1Publish-subscribe pattern is an effective communication paradigm where
publisher’s messages are distributed to the corresponding subscribers.

machine asset DT instances that are associated with each

machine in a SM system. In the context of SDC, the DT

instances are building blocks that enable an SDC user to

customize the functionality of the DT platform based on a

particular need for the SM system. We refer to the set of DT

instances deployed in the DT platform as the DT pool.

Each DT instance is composed of a mathematical model,

a data agent and a message handler, as shown in Figs. 2-3.

1) Mathematical Model: the mathematical model is the

core of a DT instance. It is an abstract representation (e.g.,

physics-based) that describes the behavior of the physical

asset or a process. Experimental data are used to validate

and continuously update the model for maximizing the ap-

plicability and value of the digital representation. These data

include data generated by the plant (through the data agent)

or the other DT instances (through the message handler).

2) Data Agent: each DT instance has a data agent that

connects it to the data services. It allows a DT instance to ac-

quire real-time (as well as historical) data via a standardized

interface. This interface also enables the flexibility to include

any plant data source from the data services if needed.

3) Message Handler: DT instances and the DT manager

are interconnected via a pub-sub infrastructure in the DT

pool. Depending on the intended goal, a DT instance can

work either individually or cooperatively (i.e., the function-

ality of a DT could depend on data generated by another

DT) to deliver the intended functionality. Each DT instance

is embedded with a message handler to process the messages

publishing to and/or subscribing from other DT instances.

Details regarding the pub-sub are discussed in Section III-C.

B. Digital Twin Manager

The DT manager coordinates the required interactions

between the DT instances and other SDC components,

i.e., the SDC applications and the decision maker. Tasks

handled by the DT manager include responding to requests



of information exchange between the DT instances (via the

pub-sub infrastructure) and with the other SDC components,

querying devices real-time status, and initiating simulation

tasks. The DT manager comprises (a) a DT importer, (b) a

DT coordinator and (c) a simulation manager.

1) Digital Twin Importer: a user of the DT platform

can customize the system by defining and/or initializing a

set of DT instances that provide a set of desired functions

for the SM system. Users can dynamically import/remove

a DT instance into/from the DT pool via the DT importer.

In addition, the DT class, provided functionality, and data

dependencies (topics to be published and subscribed) are

registered with the DT coordinator when a DT instance is

imported and initialized.

2) Digital Twin Coordinator: the DT coordinator is the

access point to the DTs at runtime. It handles data shar-

ing between the DTs and the requests sent by the SDC

applications and decision maker. Depending on the type of

requests, the DT coordinator routes the corresponding tasks

and data to the corresponding DTs. It acts as a message

broker (e.g., a ActiveMQ broker) that handles the pub-sub

data flow across the DT instances. A DT publishes data

whenever it determines that an update of the data is needed.

A DT can also register with the message broker to listen

to a set of data published by other DTs. By doing so, the

subscriber DT is guaranteed to be notified and obtain the

latest data whenever there is an update from a publisher DT.

In the case a new DT is imported, the latest data for its

subscribed topics are provided by the DT coordinator once

the new DT is verified and started.

3) Simulation Manager: in addition to the real-time mod-

eling capabilities, some DT classes also have simulation

capabilities that allow the corresponding DT instances to

predict the machine and system future states. By using a

technology such as Functional Mock-up Interface (FMI) [17],

it is possible to run simulations over multiple DT instances.

This capability is useful for validating a manufacturing

plan change, predicting manufacturing performance, evalu-

ating across different plant configurations, etc. A simulation

manger is used in the DT platform to manage the simulation

tasks requested by SDC applications or the decision maker.

On receiving a simulation request, the simulation manager

parses the request and distributes it to the corresponding DT

instances. Simulation results are collected by the simulation

manager afterwards and returned to the requester.

C. Publish-Subscribe Infrastructure

In the pub-sub infrastructure, a topic represents a type of

information for which data is generated by instances of one

or more DT classes. As in a conventional topic-based pub-

sub infrastructure, the data published for a topic (in the form

of messages) is distributed to the DT instances that subscribe

to it. A topic can be in any form depending on the design

and purpose of the publisher DT instance. It can be a single

value (e.g., a variable that represents system throughput), a

vector (e.g., a set of variables that models the dynamics of

a machine), or a complex structure (e.g., a series of nodes

Fig. 3: Data flow between the publisher and subscriber DTs.

and edges modeling the plant’s layout). A DT instance can

publish to multiple topics and there can also be multiple DT

instances publishing to the same topic.
In the DT pool, the Extensible Markup Language (XML)

format is used to encapsulate data in a message published

to a topic. XML supports a validation scheme in which

a predefined XML schema that describes the structure of

an XML format can be used to validate the correctness of

the given XML data against such a format (i.e., whether

the XML data consists of correct type and the number of

elements and attributes) as depicted in Fig. 3. The XML

schema for a topic is provided to the DT coordinator by

the publisher DT instance that first successfully creates the

topic. The coordinator uses the schema to validate that a DT

instance is correctly registering for publishing to an existing

topic. It is also used when subscribing to the topic to check

if the schema matches its expectation.

D. Synchronization
1) Time Synchronization: time synchronization is vital to

having a precise time reference in the SDC framework. It

can be achieved by using a time synchronization protocol

such as Precision Time Protocol (PTP). PTP enables a time

accuracy in the sub-microsecond range in the DT manager,

DT instances and data services. Data shared in the SDC

framework is time-stamped so that it can be referred based

on the precise synchronized time.
2) Data Synchronization: in SDC, two aspects of data

synchronization are considered: (i) the synchronization be-

tween the DT models and the physical assets or processes

and (ii) the synchronization between DT instances.
In SDC, data services in the central controller allow

data collection and storage through a data management

infrastructure. A DT instance can utilize its data agent to

obtain the collected data from the data services, allowing

a DT instance to synchronize the implemented model with

its associated physical asset or process. Synchronization

between DT instances is ensured by the topic-based data

sharing mechanism in the pub-sub architecture. When new

data is generated and published by a DT instance, the

coordinator distributes it (wrapped in a topic-based message)

to the corresponding subscriber DT instances promptly. As a

result, the information for a topic across the associated DT

instances is consistent and the states of the DT models are

synchronized.

IV. DIGITAL TWIN FOR GLOBAL VIEW

As noted in Section III, different classes in the DT

platform can be supported depending on the needs of the



manufacturing environment. In this section we introduce four

classes of DTs that would often be used to construct a real-

time global view of a SM system in order to address com-

mon manufacturing issues such as throughput and quality

optimization, and reduction of cost and variability. Note that

a manufacturing system might include instances of other

DT classes depending on particular needs. The proposed DT

platform is flexible enough to allow including other DTs.

A. Topology Digital Twin

The topology DT is a representation of the physical layout

of the system in real-time2. Such a representation allows to

accurately and timely track the availability of machines and

transport systems and their connectivity. This can be used by

apps such as flexible rerouting to find the best routing paths

according to current system workload. The topology DT is a

directed graph where each node (vertex) is a component that

processes parts and each link (edge) is a physical path on

which parts can be transported from one node to another. For

instance, a conveyor that carries parts from a cell to another

is a path (edge) that links the two cells (nodes).

We divide the manufacturing equipment into nodes and

links. Each work station (e.g., milling/turning machine, as-

sembly/welding robot, quality inspection, buffer, etc.) in the

manufacturing system is a single node, whereas a possible

material flow between two nodes (e.g., conveyor, AGV,

gantry) is represented by a directed link. Links could be

unidirectional or bidirectional.

Formally, we define the topology DT as a tuple T =
(N,L, In,Out,Δ) where:

• N is a finite set of nodes;

• L is a set of links that connect some of these nodes;

• In is the set of material flow inputs;

• Out is the set of material flow outputs;

The system may consist of unique or multiple material

flow inputs/outputs. In and Out are defined as nodes,

i.e., {In,Out} ∈ N .

• Δ : N × L∗ → N is a function that defines the flow

transitions, where L∗ denotes the set of all finite link

concatenations in L. An element l ∈ L∗ is a sequence of

links. The length of a sequence l is given by the number

of its involved links. A sequence l ∈ L∗ consists of at

least 1 link.

The construction of the topology DT consists of first

enumerating the equipment of the system to verify the set

of nodes and links. Second, the interconnections between

the nodes and links are defined as flow transitions to depict

the relationships between the machines/stations and transport

systems. Eventually, corresponding plant floor data are syn-

chronized with the DT through the data agent to provide a

real-time replica of the physical layout.

2Real-time is used here to indicate that the DT representation is updated
with sufficient promptness so that appropriate decisions can be made based
on the assumption that the DT is an up-to-date representation of the system.
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Fig. 4: The discrete model in the machine asset DT.

B. Machine Asset Digital Twin

The machine asset DT is a generic discrete model that

provides access to the structure, behavior and working con-

ditions of an individual manufacturing unit. We define a

machine asset DT as a Finite State Machine (FSM) with

3 global states: Idle, Up, and Down. A machine could

have multiple Up and Down sub-states as shown in Fig.

4. Transitions between these states could be event-driven or

time-driven. Annotating edges, i.e., {α, β, γ, δ, ε, ζ}, refer to

the occurrence of an event or the elapse of some time. It is

also possible to have transitions between states inside the Up
and Down superstates. More details could be found in [18].

To build a machine asset DT, the Subject Matter Expert

(SME) starts with verifying, from the states consolidated in

the generic model of Fig. 4, the set of states that a machine

has. Then, the transitions between these states are defined and

depicted in the model. Ultimately, the model is synchronized

with the machine data through the data agent to provide a

real-time replica of the physical machine.

C. Machine Process Digital Twin

The processing environment provided by the machine

(e.g., when operating on a part) is captured by the machine

process DT. For instance, Ordinary Differential Equations

(ODEs) are used for modeling the continuous variables of

interest, namely states, of the manufacturing unit in closed-

loop. The generic model of non-linear ODEs are given by

ẋ = f(x,u, t) (1)

where, x ∈ R
n is the state vector and f(x,u, t) is the flow

dynamics of the state according to u ∈ R
m, and time variable

t ∈ [0,∞). Initial conditions of the dynamics are given as

x(0) = x̄, which is updated using the data agent at the

time of initialization. Various dynamics can be lumped into

a system of ODEs and represented as Eq. 1 without loss

of generality. The DT is updated with data at a predefined

frequency, which results in difference equations given by

xk+1 = f(xk,uk, k) (2)

where xk ∈ R
n is the discrete state variable at time step

k ∈ N, and uk ∈ R
m is the discrete control input at time step

k. The models of the manufacturing unit may be predefined

by an SME, or can be learned from the data streams. While

learning the model from data is a non-trivial task, parameters
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Fig. 5: The flow shop system example.

of a certain class of model can be identified using system

identification and machine learning techniques [19].

While continuous dynamics are often utilized in machine

process digital twins, discrete state-based models are often

used to model the processing capability as a unit of work and

then provide analysis so as to control or optimize the process

with discrete actions such as changing process parameters

each time a new part enters the machine. Model-based

Process Control (MPC), virtual metrology, virtual sensing,

sensor fusion, and model-based predictive maintenance are

common techniques used in this domain [20], [21], [22].

D. System Process Digital Twin

The system process DT models the material moving in

the SM system and provides insight on high-level process

information. The outcomes of the system process DT are the

system-level performance metrics such as system/cell cycle

time, Work-In-Process (WIP), quality, and throughput.

Formally, the system process DT is defined as a tuple P =
(T,W, loc, pos) where:

• T is the topology model defined in the topology DT.

• W is a set of unique identifiers for all materials that will

ever be seen in the system, i.e., W = {wi|i ∈ N}.

• loc is a function, loc : W → N ∪ L, that gives the

location of a material in the physical topology model.

• pos is a function, pos : W → N, that gives the actual

position of a material in the location indicated by the

function loc. For example, loc(wi) = B1, pos(wi) = 2
indicates that the material wi is at the second slot in the

buffer B1.

Using run-time data from the factory floor over a period

of time via the data services, a series of discrete states and

their transitions can be constructed. By analyzing the part po-

sitions across multiple states, the system-level performance

metrics (e.g., throughput, WIP) in a given time span can be

estimated. Also, quality data for individual manufacturing

units are attributed to the yield of the individual units,

although additional considerations may be added.

V. IMPLEMENTATION AND EVALUATION

A. System description and DTs development

To illustrate the usefulness of the proposed DT framework,

we use the conceptual flow shop system example of Fig.

5 with real CNC data. The system is comprised of 3

CNC machines (cnc1, cnc2, and cnc3). Each CNC can mill

different part features (f1, f2, and f3). Parts are transported

between the CNC machines and the downstream/upstream

buffers through a gantry system.

Δ(In, gantry) = cnc1; Δ(cnc1, gantry) = In
Δ(cnc1, gantry) = cnc2; Δ(cnc2, gantry) = cnc1
Δ(cnc2, gantry) = cnc3; Δ(cnc3, gantry) = cnc2
Δ(cnc3, gantry) = Out; Δ(Out, gantry) = cnc3

The initial production plan is defined by the SME such that

parts are moved to cnc1, cnc2, and cnc3 to realize features

f1, f2, and f3, respectively. The following DTs are build for

the real-time monitoring and reconfiguration of the system.

Topology DT: an SME constructs the initial topology DT by

verifying the set of nodes and links in the system and their

interconnection. The SME verifies that L = {gantry} is the

only bidirectional link to move material between the nodes

N = {In, cnc1, cnc2, cnc3, Out}. The flow transitions are

defined by:

The corresponding plant floor data are synchronized with

the DT through the data agent to provide a real-time replica

of the physical layout as shown in Fig. 6.

CNC
1

Gantry

CNC
3

In out

Fig. 6: The topology DT with cnc2 omitted.

Machine Asset DTs: machine asset DTs are built to provide

insight on the context and behavior of individual manufac-

turing units in real-time. For instance, the machine asset

DT for cnc1 is represented in Fig. 7. The cnc1 has the

capability of processing part features f1 (state “Cycle f1”),

f2 (state “Cycle f2”), and f3 (state “Cycle f3”). a part

that requires feature f1 is detected and tool1 is installed

(pf1 ∧ tl1), the machine starts its “Cycle f1” which takes

the cycle time τ(C1). After the elapse of τ(C1), the machine

ends its cycle (event “ec1”) and transitions to “Idle”. In a

similar way, the parts that require features f2 and f3 go

to the states “Cycle f2” with the cycle time τ(C2) and

“Cycle f3” with τ(C3), respectively. If the corresponding

tool is not outfitted, a tool change is necessary to switch

between processing f1, f2, and f3. The setup times τ(S1),
τ(S2), and τ(S3) are associated to the setup states “Setup1”,

“Setup2”, and “Setup3”, respectively. If a fault (ft) is

detected, the machine goes to “Down” state. If the fault

is cleared and the reset button is pressed (¬ft ∧ reset),
the machine transitions to the “Idle” state. Cycle times and

setup times are estimated using historical data.

ftft
ftftftft ft

ft  reset

pf1  tl1
pf2  tl2 pf3  tl3

pf3  tl3pf1   tl1 pf2  tl2

es1 es2 es3

ec1
ec2

ec3

Fig. 7: Machine asset DT for cnc1.
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Fig. 8: Anomaly detection on the cnc2 using the machine process
DT. Dashed center line is a fitted curve on the measured spindle
current. Anomalous peak spindle current measurement are shown
with red marked points.

Machine Process DT: the machine process DT in this

case study is tasked with modeling the spindle current of

a CNC. Spindle current provides insight into the equivalent

forces acting on the spindle. If there is excessive loading,

the tool may break and damage the part in process. To

identify the peaks in the spindle current and classify the

ones that could cause tool breakage, an adaptive limit based

anomaly detection scheme is implemented. Fig. 8 illustrates

the adaptive limit based anomaly detection for tool breakage

in cnc2. An SME defines safety limits for the spindle

current peaks, using heuristics and historical spindle current

measurements available through the machine process DT. An

anomaly detection app uses the spindle current data from

the machine process DT and fits a fourth order polynomial

using weighted regularized least squares (dashed center-line

in Fig. 8). The inner limit signifies tool-wear for the spindle

tool and the outer limit is the safety limit for tool breakage.

B. Anomaly Detection and Control Reconfiguration

An SDC anomaly detection app identifies the spindle

current measurements that breach the inner limit (red markers

in Fig. 8), and signals an anomaly prior to an actual tool

breakage. Thus, a fault (“ft”) event is triggered. Conse-

quently, the cnc2 is omitted in the topology DT of Fig. 6

indicating that the machine is not available. In the machine

asset DT of cnc2, the cnc2 transitions to the “Down” state.

This example illustrates the potential use of machine process

DT to monitor process parameters and machine health for

anomaly detection and performance monitoring.

As cnc2 is no longer available, the SDC decision maker

evaluates a cost function and feasibility constraints to re-

configure the manufacturing cell. An optimization module

inside the decision maker uses the data from DTs to for-

mulate and compute an optimization problem for optimal

reconfiguration decisions. Since all CNCs in the system are

capable of milling all three features, the possible number of

combinations of feature assignments for the remaining two

CNCs is 23 = 8. Let φj = (μ(f1), μ(f2), μ(f3)) denote a

possible assignment combination where μ(fi) denotes which

CNC is assigned for the milling of a particular feature fi.
Additionally, let λi(φ) ∈ N denote the number of cnci
assignments in the combination φj , and Λi = {fi|i ∈
{1, 2, 3}} denote the corresponding features. Then a cost

function for the manufacturing time of each assignment in

the case study is given as:

JT (φj)=
3∑

i=1

τμ(fi)(Ci) +

{∑
∀k∈Λi

τi(Sk), if λi(φ) > 1

0 otherwise

Additionally, define the quality function as the product of

the yields of the machines in a given combination φj .

JQ(φj) =
3∏

i=1

qμ(fi),

where qμ(fi) ∈ (0, 1] denotes the yield of the CNC assigned

for the feature fi. Combining the two objectives, an opti-

mization problem is formed as

min
φ

J(φj) = α0JT (φj) + α1(1− JQ(φj)) (3a)

s.t. : φj ∈ Traces(T ) (3b)

JT (φj) ≤ τmax (3c)

JQ(φj) ≥ qmin (3d)

where, α0, α1 are normalized weights on the time and qual-

ity, respectively, and are determined by the decision maker,

τmax denotes the maximum allowable processing time for

the manufacturing cell, qmin denotes the minimum allowable

yield for the manufacturing cell, and the constraint in Eq. 3b

denotes that each φj is a feasible assignment with respect

to the topology DT. The minimum quality and maximum

processing time constraints are added to ensure efficient

solutions, but based on the feasibility of the optimization

these constraints may be relaxed. Numerical values for the

cycle and setup times of cnc1 and cnc3 are given in Table I.

TABLE I. Cycle and setup times of cnc1 and cnc3 for the
reconfiguration example. All units are in seconds.

Machine τ(S1) τ(S2) τ(S3) τ(C1) τ(C2) τ(C3)

cnc1 7 10 14 320 307 410
cnc2 7 10 14 332 310 384

The yield of cnc1 is 0.95, 0.94, 0.96 for features f1, f2, f3
respectively. The yield of cnc2 is 0.99, 0.98, 0.92 for features

f1, f2, f3 respectively. For the optimization in (3), the 8
solutions that satisfy the condition in constraint (3b) are

evaluated. The constraints are chosen as τmax = 1070 sec
and qmin = 0.8. The weights αi are normalized by the

maximum values of the functions JT (φj) and JQ(φj) in the

implementation of the cost function. The problem is encoded

as a mixed integer linear program and solved using Matlab.

TABLE II. Results for the reconfiguration in the case study.

Type φ∗ JT (φ∗
j ) JQ(φ∗

j )

Best Yield cnc1,cnc3,cnc1 1061 sec 0.89
Best Time cnc1,cnc1,cnc3 1028 sec 0.82

Mixed cnc1,cnc3,cnc3 1038 sec 0.85

The type of solution, optimizer assignment φ∗, associated

time, and associated quality results evaluated by the opti-

mization are shown in Table II. The best yield solution uses

(α0 = 0, α1 = 1), the best time solution uses (α0 = 1, α1 =

1400



0), and the mixed solution uses (α0 = 0.8, α1 = 0.2). Based

on the type of solution evaluated by the decision maker, a

reconfiguration is implemented in the system.

This case study shows how the DT platform uses multiple

DTs for machine failure prediction, rescheduling, and rec-

ommendation of new control reconfiguration actions. Using

a single DT would not be sufficient to address all these

purposes. A machine process DT, herein uses the spindle

current signature in real-time to monitor the tool health. An

SDC app uses the image provided by this DT to predict

tool breakage. The defective machine is then avoided and

a reconfiguration action is evaluated by the SDC decision

maker, which uses the feasible routes, machine availability,

and machine capability, to provide an optimal reconfiguration

of the system with respect to throughput and quality. The

machine process DT alone is incapable of providing all

this information, which requires cooperation with other DTs.

In summary, cooperation of multiple DTs within the DT

platform is needed to address multiple purposes, mainly real-

time monitoring, anomaly detection/prediction, and real-time

reconfiguration and optimization.

VI. DISCUSSION AND CONCLUSION

The proposed DT framework offers SDC users the flexi-

bility and agility to design, build, extend, and maintain DT

systems at a faster pace and to coordinate these systems

around factory-wide objectives to accommodate SM systems

with a variety of requirements. It helps improve quality and

throughput of the production while reducing waste in time

and resource. The end result is advancement in SM, DT

technology, and the manufacturing industry.

The overall DT platform is partitioned into individual DT

classes that allow to model the major components such as

physical topology, machine assets, machine processes, and

system processes in order to respond to several SM prob-

lems. DT instances of these classes are ultimately combined

under the coordination of the DT manager. The coordination

requires the DT platform to operate at a performance level

high enough so that reconfiguration decisions can be made

without the decision process time impacting the throughput

or quality of the system. On the other hand, the functionality

of some DTs rely on other neighboring DTs. Therefore, a

failure in a DT (e.g., a DT unexpectedly disconnected from

the pub-sub infrastructure) can result in a chain reaction and

lead to malfunction in the entire DT platform. To reduce

the likelihood of interruption, the SDC user may deploy

redundant DTs as backups or DTs and the SDC may employ

strategies to provide alternative solutions if a DT anywhere

in the decision chain is not available or does not provide

information. This allows the DT platform to guarantee the

availability and maintain the functionality at small or no cost.

In current design, simulations are performed independently

by individual DTs that support a simulation functionality.

However, this limits the capability of predicting the states

of the global view. In future work, we will improve the

simulation manager with a more comprehensive simulation

mechanism in which simulation can be carried out in a group

of DTs. This would also enhance the flexibility in the DT

platform to support more complex applications.
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