
Towards Automated Safety Vetting of PLC Code
in Real-World Plants

Mu Zhang∗, Chien-Ying Chen†, Bin-Chou Kao‡, Yassine Qamsane§, Yuru Shao¶, Yikai Lin¶,
Elaine Shi∗, Sibin Mohan†, Kira Barton§, James Moyne§ and Z. Morley Mao¶

∗Department of Computer Science, Cornell University
†Department of Computer Science, University of Illinois at Urbana-Champaign
‡Information Trust Institute, University of Illinois at Urbana-Champaign
§Department of Mechanical Engineering, University of Michigan

¶Department of Electrical Engineering and Computer Science, University of Michigan
∗mz496@cornell.edu, ∗elaine@cs.cornell.edu, †{cchen140,sibin}@illinois.edu, ‡ bkao2@illinois.edu,

§{yqamsane,bartonkl,moyne}@umich.edu, ¶{yurushao,yklin,zmao}@umich.edu

Abstract—Safety violations in programmable logic controllers
(PLCs), caused either by faults or attacks, have recently garnered
significant attention. However, prior efforts at PLC code vetting
suffer from many drawbacks. Static analyses and verification
cause significant false positives and cannot reveal specific runtime
contexts. Dynamic analyses and symbolic execution, on the other
hand, fail due to their inability to handle real-world PLC pro-
grams that are event-driven and timing sensitive. In this paper, we
propose VETPLC, a temporal context-aware, program analysis-
based approach to produce timed event sequences that can be
used for automatic safety vetting. To this end, we (a) perform static
program analysis to create timed event causality graphs in order
to understand causal relations among events in PLC code and (b)
mine temporal invariants from data traces collected in Industrial
Control System (ICS) testbeds to quantitatively gauge temporal
dependencies that are constrained by machine operations. Our
VETPLC prototype has been implemented in 15K lines of code.
We evaluate it on 10 real-world scenarios from two different
ICS settings. Our experiments show that VETPLC outperforms
state-of-the-art techniques and can generate event sequences that
can be used to automatically detect hidden safety violations.

I. INTRODUCTION

Industrial control systems (ICS) play an essential role in
modern society. In the new era of Industry 4.0 [12], comput-
erized control systems have become the backbone of crucial
infrastructures such as power grids, transportation as well as
manufacturing sectors. Compared to traditional ICS that were
constructed using fixed electronic circuits, programmable logic
controllers (PLC) have brought flexibility, configurability and
automation to these domains. However, this freedom has also
introduced complexity, and thus uncertainty, to safety-critical
physical plants. Unexpected logic errors may cause serious
problems such as fatal collisions or massive explosions. Re-
ports have shown that anomalous ICS behaviors have resulted
in loss of life on real-world factory floors [11], [19].

In addition, security problems are highly coupled with safety
issues in the ICS domain. In fact, physical damage is one
of the major goals for security breaches in ICS. Compared
to attacks targeting consumers or IT systems, that often aim
to make profits or steal data, cyberattacks on factory floors
are intended to sabotage physical infrastructures. Real-world

incidents, including Stuxnet [36], German Steel Mill Cyber At-
tack [49], Ukrainian Power Grid Attack [50], have shown that
although adversaries must first leverage security penetration
techniques to infiltrate the digital layers of modern plants, they
often attempt to manipulate critical safety parameters, such as
the frequency of nuclear centrifuges, and trigger benign but
faulty code, to cause serious damage. Hence, there is a need
for detecting situations where such safety violations can occur.
Due to the complexity of contemporary ICS, that involves
interactions between PLCs and various other machines, we
need automated mechanisms to find such problems.

While there exists work [24], [28], [30], [31], [42], [44],
[57], [58], [61], [63], [65] that aims to statically verify PLC
logic in a formal manner, such static analysis techniques
suffer from significant false positives since they are unable
to reason about runtime execution contexts. For instance, they
may detect potential problematic paths in the code that are
infeasible at runtime. In addition, the behavior of ICS is
strictly constrained by physical limits at runtime (e.g., velocity,
temperature, etc.) as well as changes to these properties.

To address these limitations, prior work [35], [39], [45],
[62] has explored the usage of dynamic simulations of runtime
behaviors to detect PLC safety violations. In addition, recent
work [43], [54] has enabled symbolic execution on PLC
code. Despite their apparent effectiveness in finding bugs
in independent PLC programs, these techniques are limited
because they overlook an important fact that a real-world
PLC is never working alone. On the contrary, it collaborates
with other programmable components on the factory floor,
such as robots, CNCs or even other PLCs, to carry out
certain tasks. Hence, PLC logic is not only triggered by
internal data inputs but also driven by external events due
to the coordination and communication among multiple units.
Unfortunately, the aforementioned work focuses mainly on the
testing or resolution of input values and not on the complete
event space of multiple collaborating components, and thus
cannot automatically exercise real-life PLC programs.

To address this problem, we propose VETPLC, a temporal
context-aware, program analysis-based system that automati-

cally constructs timed event sequences. These sequences can
then enable automated dynamic safety vetting of PLC code.

Although they are still lacking in the PLC context,
automated dynamic analysis and symbolic execution on
event-driven programs have been well-studied in the smart-
phone [27], [46], [55], [67] and web [51], [66] domains. To
model non-deterministic events, researchers have proposed to
automatically generate event sequences of different orders,
based upon program models [67] or testing [27], [46], [51],
[55], [66] – to drive program execution. Yet permutation of
events is insufficient to describe the conditions that lead to
safety violations in PLC code. The timings, at which events
are delivered, matter. This is because PLC events have implicit
temporal dependencies caused by both intrinsic durations and
external physical constraints. Our key observation is that
multiple event sequences of the same valid order may or
may not lead to safety violations due to the different timings
between events. Thus, generating timed event sequences is a
requisite step to successfully reveal safety issues in PLC code.

Thus, VETPLC complements the prior research on dynamic
analyses and symbolic execution that search merely the value
space in PLC code. It further introduces novel techniques to
explore the timed event space so as to effectively exercise and
examine PLC programs.

Specifically, (a) to uncover the order of triggering events,
we first perform static program analyses on controller code (of
the various interconnected units), including PLC and robot and
generate timed event causality graphs to represent the temporal
dependencies of cross-device events; (b) to quantitatively
model the timing of events, we analyze the controller code
to extract internal time limits, collect runtime data traces from
physical ICS systems and then leverage data mining to recover
temporal invariants; (c) combining this timing model with
causality graphs, we then create timed event sequences that can
serve as inputs for any dynamic PLC code analyses; to enable
automated safety vetting, we formally define and manually
craft safety specifications based upon expert knowledge and
conduct runtime verification on PLC execution traces.

It is worth noting that previous research has also sought
to create timed event sequences for testing event-driven real-
time programs. Event sequences have been produced from
either manually crafted specifications [48] or profiling program
execution time [52]. In contrast, we automatically extract event
ordering and timing using program analyses and data mining,
and further enable this technique in the new domain of PLCs
and broadly in the context of ICS.

To the best of our knowledge, we are the first to enable
timing-aware safety vetting on event-driven time-constrained
PLC code for real-world ICS, in particular, via extracting event
temporalities from program logic and physical environments.

We have implemented VETPLC in 15K lines of code –
7K lines of C++ and 8K lines of Java. To demonstrate the
efficacy of our approach, we apply it to 10 real-world scenarios
on two ICS testbeds that are of completely different physical
compositions: (i) the SMART [47] testbed is a scaled-down
yet fully functional automotive production line and (ii) the

Fischertechnik testbed replicates a consecutive part processing
facility controlled by multiple collaborative PLCs. Note that
the PLC programs under examination remain intact, and we
did not introduce vulnerable code into them. Experimental
results show that VETPLC outperforms the state-of-the-art
techniques and can effectively produce event sequences that
lead to deep and authentic safety bugs, which are already
hidden in real-world PLC code due to developers’ mistakes.

In summary, this paper makes the following contributions:
• We explore physical ICS testbeds to gain an important

insight: real-world controller code is event-driven and
timing-sensitive.

• We are the first to automate dynamic safety vetting of
real-world PLC code via the creation of timed event
sequences.

• We use custom static analyses, that address the specific
programming paradigms of PLCs, to extract causal rela-
tionships among events.

• To the best of our knowledge, this is the first work that
distills temporal dependencies in physical ICS testbeds.

• We have demonstrated the effectiveness of VETPLC on
two different types of real-world ICS testbeds: VETPLC
has found “organic” vulnerabilities in real-world testbeds.

II. BACKGROUND

Programmable Logic Controller. A programmable logic
controller [18] is the core control unit of a large number
of modern automation systems. It can be either used as a
separated master controller or integrated as a slave controller
to other machines such as CNCs. The basic functionality of
a PLC is to repeatedly generate control commands based on
input signals and internal control logic. On startup, a PLC is
running in an infinite loop where each iteration, called a scan
cycle, consists of three major phases. 1) Input: PLC reads
inputs from external events (e.g., sensors) and buffers them
in memory. 2) Computation: All variable values are fixed.
The PLC then invokes its logic program and calculates new
variable states based on the buffered inputs and their current
states. 3) Output: The PLC writes the computed new states
into output memory in order to start the next cycle.

PLC programming languages follow the international stan-
dard IEC 61131-3 [10]. It defines three graphical languages
and two textual languages. All of the languages share IEC
61131-3 common elements and can be translated between
each. In particular, the Structured Text (ST) is a high-level
textual language that syntactically resembles Pascal (Figure 2)
and thus is known for its understandability [20]. Notice,
however, although an ST program resembles those written in
other high-level languages, its dataflow is very different due
to the existence of scan cycles. Since PLC variables are kept
intact during the computation phase, value changes caused by
logic code do not become effective until the next cycle. In
effect, in any scan cycle, a PLC variable bears two “versions”:
the “current” version from the last cycle is effective at the
present time; the “new” version records all the changes in the
current round and eventually replaces the “current” one during

2

the output phase. As a result, 1) there exists no dataflow within
one scan cycle; 2) dataflow happens between two neighboring
cycles and the “current” value of a variable may be the result
of any assignment instructions in the last cycle.

Industrial Robot. An industrial robot is essential for per-
forming various actuations, such as assembly, pick-and-place,
packaging, etc. Robot programming languages of individual
vendors are proprietary but in general fall into two cate-
gories: high-level and low-level. High-level languages, such as
KAREL for FANUC robots or RAPID for ABB, are influenced
by the Pascal syntax. Low-level code is assembly-like, and is
developed through teach pendants which are handheld devices
directly connected to robots. Aside from common program
instructions (e.g., assignments, conditional or unconditional
jumps and function calls), these programs all employ special
motion instructions to guide physical movements and use wait
instructions to enable delays and control timings. While Robot
programs can be launched via a main function, in practice
they are triggered dynamically by input events. The mapping
between triggering signals and call targets is configured using
teach pendants. Without loss of generality, we hereafter ex-
plain robot inner-workings based upon pick-and-place robots
from FANUC that has the most industrial robots installed
worldwide [56]. Specifically, we focus on its teach pendant
(TP) language, depicted in Figure 8, which is the de facto
standard to program FANUC robots [1].

Cross-Device Communication. A PLC and a remote device
communicate via signals using industrial network protocols,
such as EtherNet/IP [8]. The remote device opens multiple
pins for inputs and outputs. For example, a FANUC robot can
enable 512 bits of digit inputs (DI) and 512 bits of digit outputs
(DO). On the PLC side, each remote pin is mapped as a base
address (i.e., IP address) plus an offset. Thus, PLC code can
control a remote device by directly accessing these mapped
I/O bits. The I/O mappings are automatically configured when
a remote device is added to an ICS environment supervised
by a PLC. Once its IP address is determined, the underlying
EtherNet/IP protocol takes the responsibility to recognize the
I/Os on this device and bind them to PLC variables.

III. PROBLEM STATEMENT & APPROACH OVERVIEW

A. Motivating Example

We motivate our problem using our SMART testbed [47],
depicted in Figure 1. This testbed represents a fully functional
assembly line that produces model cars. It consists of a gantry
crane, a circular conveyor belt, 2 pick-and-place robots, 3 CNC
(Computer Numerical Control) machines, and is controlled by
a PLC. Particularly, it is equipped with Allen Bradley PLC
from Rockwell Automation1 and FANUC robots2.

It is worth noting that the SMART testbed is a miniature
of real-world automotive manufacturing sectors. It has been
established and constantly upgraded for over 20 years, and has
been used for numerous projects over the decades. This testbed

1Leading PLC supplier in North America w/ 60% of the market share [17]
2The most popular industrial robots worldwide [1]

Fig. 1: SMART Testbed for Manufacturing Model Vehicles
was developed by engineers from Rockwell Automation, fac-
ulty and graduate students: the hardware components and the
way they connect precisely resemble those on real-world fac-
tory floors; a large body of controller code (e.g., robot motion,
CNC operation, RFID I/O, etc.) was directly borrowed from
industry practices [7]. The fidelity of this control system has
been verified through consistent collaboration with Rockwell
Automation.

Physical Compositions. The gantry system serves as the
entry and exit points of the testbed. It delivers empty pallets
to CNC machine #1 to start the manufacturing processes and,
eventually, it removes the produced parts from the conveyor.
The circular conveyor belt is always on and keeps moving
the pallets around the robots and CNCs. The robots and CNC
machines are organized into two cells to accomplish different
tasks (e.g., molding, flipping, etc.), where Cell 1 is comprised
of Robot #1 and CNC #1, and Cell 2 contains the rest.
Immediately in front of each cell are RFID transceivers that
can sense the presence of incoming pallets, empty or loaded,
because RFID tags are attached to both pallets and parts. The
RFID tag on a part maintains a numerical value indicating its
next manufacturing process. A pallet stopper is also installed
to every cell to block moving pallets. By default, the stopper
is always enabled to block any arriving pallets unless a signal
that indicates otherwise is received.

PLC and Robot Logics. Figure 2 and Figure 8 (in Ap-
pendix A) show in part the control logic of the PLC and
Robot #1 in Cell 1, respectively. The code snippets depict
how a processed part is passed from CNC to conveyor.

Since a raw part has been delivered by the gantry to the
CNC for processing, the PLC code (Figure 2) is now expecting
to receive the processed part and deliver it to the next cell
using an empty pallet. The coordination between PLC and
robot is realized through events. In order to receive and send
these signals, 6 input variables (Ln.3-7,52), 2 output variables
(Ln.8-9) and 4 internal variables (Ln.11-13,49) are declared.
In each scan cycle, the PLC first clears the output variables
during initialization (Ln.16-19) and then checks all the input
variables sequentially to update the outputs (Ln.21-44).

More concretely, Ln.21-23 first update the availability of
an empty pallet at Cell 1 (Pallet Arrival) by checking the
presence of a pallet (Pallet Sensor) and also the absence of
a part (NOT(Part Sensor)). If, however, an incoming pallet
is already loaded with a part (Ln.25-27), the PLC will send
a signal via Retract Stopper to retract the stopper and let
this pallet pass through. When an empty pallet has arrived at

3

1 PROGRAM CELL1
2 VAR
3 Pallet_Sensor AT %IX0.1 : BOOL;
4 Part_Sensor AT %IX0.2 : BOOL;
5 CNC_Part_Ready AT %IX0.3 : BOOL;
6 Robot_Ready AT %IX0.4 : BOOL; //DO[6]
7 Part_AtConveyor AT %IX0.5 : BOOL; //DO[2]
8 Retract_Stopper AT %QX0.1: BOOL;
9 Deliver_Part AT %QX0.2 : BOOL; //DI[0]

10
11 Pallet_Arrival AT %MX0.1 : BOOL;
12 Update_Part_Process AT %MX0.2 : BOOL;
13 Update_Complete AT %MX0.3 : BOOL;
14 END_VAR
15
16 Pallet_Arrival := false;
17 Retract_Stopper := false;
18 Deliver_Part := false;
19 Update_Part_Process := false;
20
21 IF Pallet_Sensor AND NOT(Part_Sensor) THEN
22 Pallet_Arrival := true;
23 END_IF;
24
25 IF Part_Sensor THEN
26 Retract_Stopper := true;
27 END_IF;
28
29 IF Pallet_Arrival AND CNC_Part_Ready AND Robot_Ready AND

NOT(Part_AtConveyor) THEN
30 Deliver_Part := true;
31 Update_Part_Process := true;
32 CNC_Part_Ready := false;
33 Robot_Ready := false;
34 END_IF;
35
36 IF Update_Part_Process THEN
37 //Call subroutine to update process No.
38 UPDATE_PART(2);
39 END_IF;
40
41 IF Update_Complete AND Part_AtConveyor THEN
42 Retract_Stopper := true;
43 Update_Complete := false;
44 END_IF;
45 END_PROGRAM
46
47 PROGRAM UPDATE_PART
48 VAR_INPUT
49 Part_Process AT %MD50 : DWORD;
50 END_VAR
51 VAR
52 RFID_IO_Complete AT %IX0.6 : BOOL;
53 Update_Complete AT %MX0.3 : BOOL;
54 END_VAR
55 //Perform 15-step I/O operations on RFID
56 ...
57 IF RFID_IO_Complete THEN
58 Update_Complete := true;
59 END_IF
60 END_PROGRAM

Fig. 2: PLC ST Code for Picking Up Processed Parts
Cell 1, the PLC code (Ln.29-34) will further check the Boolean
inputs, CNC Part Ready, Robot Ready and NOT(Part -

AtConveyor), to confirm the existence of a processed part,
availability of robot and clearance of parts on the conveyor,
respectively. If all the conditions are satisfied, the PLC will
then perform two actions: 1) requesting the robot to pass the
processed part to pallet and 2) updating the manufacturing
process number on the part. Two signals Deliver Part and
Update Part Process are thus enabled.

1)Deliver Part. Based upon configuration, the variable
Deliver Part is mapped to a digital input (DI[0]) on the
robot side. Being true, this signal triggers the robot program
in Figure 8 to execute. The robot code then operates the

robot arm, via a series of motion instructions such as linear
movement ‘‘L’’ or joint movement ‘‘J’’, in order to pick
up a part from the CNC machine (Figure 8 Ln.6-12) and pass
it to the conveyor (Figure 8 Ln.18-20). When the part has been
delivered to the conveyor, the robot turns on its output signal
DO[2] for 0.5 seconds to indicate the completion (Figure 8
Ln.22-24). This output is then mapped to Part AtConveyor

on the PLC. In the end, the robot returns to a safe zone.
2)Update Part Process. When this variable is true, a

subroutine UPDATE PART(int) is called to conduct a 15-
step I/O operation on the RFID attached to the part (Ln.36-
39). When this is done, the subroutine (Ln.47-60) will receive
a RFID IO Complete signal and then notify its caller by
setting the Boolean variable Update Complete.

To check whether the two actions are completed, PLC
constantly reads two response signals Part AtConveyor and
Update Complete. When both signals are true, PLC will
retract the stopper to transfer this loaded pallet (Ln.41-44).

Safety Violation and Root Cause. This code, in fact,
can lead to item overflow [9], which is a typical type of
safety issues on the factory floor. Fundamentally, it is caused
by mismatched expectations between the sender (robot) and
receiver (PLC) of event Part AtConveyor’s duration.

The signal Part AtConveyor has dual purposes. When
it is true, it indicates the robot has delivered a part to the
pallet, which can now leave the cell. When it is off, that
means the conveyor has been cleared to accept a new part,
and the robot can then move away from conveyor for another
delivery. However, in practice, the robot does not need to
stop at conveyor waiting for the pallet to leave. Although the
robot cannot pass the second part to the conveyor prior to the
departure of first one, the robot can, in fact, move towards the
CNC in advance to save time for the next delivery. For the
sake of saving time, the developers implemented a timeout in
the robot code and only allowed the event Part AtConveyor

(DO[2]) to last for 0.5 seconds (Figure 8 Ln.23-24), no matter
if the conveyor is cleared by then. As a result, the robot is
guaranteed to start handling another delivery 0.5 seconds after
the previous one.

Unfortunately, if the robot turns off Part AtConveyor

prematurely, the PLC may never see both Part AtConveyor

and Update Complete being set to true at the same time,
either due to an unexpectedly fast part delivery or slow RFID
update. This is also because PLC developers typically do not
buffer old signal values (in this case, Part AtConveyor

being “TRUE”) but rather always read data directly from their
origins, in order to avoid synchronization problem.

In fact, a real-world error has been reported from the
SMART testbed when the speed of robot is increased to
a certain extent, and thus Part AtConveyor ends even
before the update of process number is complete. Then,
there exists no window when both Update Complete and
Part AtConveyor are true (Figure 3b). In that case, even if
the pallet has already been loaded, it can never leave the cell.

This error can cause a serious safety issue since the con-
veyor will overflow due to the constantly arriving pallets.

4

4:
Ro
bo
t_
Re
ad
y

7:
Pa
rt_

At
Co
nv
ey
or

TPa
rt_

At
Co
nv
ey
or
EN

D

6:
Up

da
te
_C
om

pl
et
e

3:
CN

C_
Pa
rt_

Re
ad
y

1:
Pa
lle
t_
Se
ns
or

1à2à3à4à5à6à7, Correct

2:
¬P

ar
t_
Se
ns
or

5:
¬P

ar
t_
At
Co
nv
ey
or

0.5s

(a) Sequence 1

7:
Pa
rt_

At
Co
nv
ey
or

TPa
rt_

At
Co
nv
ey
or

EN
D

6:
Up

da
te
_C
om

pl
et
e

1…5à7à6, Error!

0.5s

(b) Sequence 2

7:
Pa
rt_

At
Co
nv
ey
or

TPa
rt_

At
Co
nv
ey
or
EN

D

6:
Up

da
te
_C
om

pl
et
e

1…5à7à6, Correct!

0.5s

(c) Sequence 3

Fig. 3: Event Sequences with Different Orders and Timings
Eventually, it will cause pallets to collide and fall, or even
cause the overloaded conveyor to break. Though seemingly
straightforward, this is in fact a typical safety violation that
can cause severe injuries on the factory floor and thus has
attracted attention in both industrial practices [5], [6], [9] and
academic research [37].

It is worth noting that although we highlight this issue
using collaborative PLC and a robot, it is actually a common
problem that can be caused by coordination of any types of
controllers, such as multiple PLCs, PLCs and CNCs (con-
trolled by an integrated slave PLC) or CNCs and robots. Both
our experience and domain knowledge from field engineers
(from Rockwell) show that a large portion of PLC safety
problems originated from the coordination required between
multiple units because they are manufactured by different
vendors and programmed individually without considering
different contexts (e.g., timing). Nevertheless, we believe the
problem involving PLCs and robots is the most challenging
one to address because it requires the understanding of multi-
ple programming languages and their interactions. Hence, we
focus on such a case to explain our approach. However, as
we show in the evaluation, our system can be applied to other
classes of coordinating systems as well.

Challenge for Detecting the Problem. Static analyses may
cause significant false positives due to the lack of runtime
constraints and thus cannot easily address this problem. For
instance, a potential error state detected by static analysis may
only be triggered when the speed of robot is greater than
10m/sec, which however can never be reached in practice.

In contrast, dynamic analysis and symbolic execution do
not cause false positives. To use them on event-driven pro-
grams, prior work [27], [46], [51], [55], [66], [67] gener-
ated event sequences of different orders to exercise code
and explore paths. In our case, one can create an event
sequence following the order of 1:Pallet Sensor 2:¬
Part Sensor 3:CNC Part Ready 4:Robot Ready

 5:¬ Part AtConveyor 6:Update Complete
7:Part AtConveyor, as illustrated in Figure 3a. Note that
eventually Part AtConveyor terminates due to the robot
logic. Exercising PLC code using such this sequence does
not lead to any error. One can then permute the events by
switching 6:Update Complete and 7:Part AtConveyor

(Figure 3b). Then, the safety problem will occur at runtime.
However, just rearranging the event order may not solve

the path discovery problem in time-constrained controller
programs. For instance, the event sequence in Figure 3c shares
the same ordering as the one in Figure 3b, yet it cannot cause

Generating Event Causality Graph
5s 1m 1s 3s

Automated Safety Vetting
w/ Timed Event Sequences

Mining Temporal Invariants

Fig. 4: Overview of VETPLC System
the error. When the time difference between events 7 and 6

changes, the consequence may also vary.
To address this problem, we expect to automatically produce

effective, error-triggering event sequences (such as Figure 3b)
by considering both ordering and timing of events. Notice
that an alternative approach is to model internal timeouts as
external events and then perform event permutation without
considering timing. For example, the termination of event
Part AtConveyor can then become another independent
event, and the permutation thus is conducted over 8 events.
However, we would argue that this solution has two major
shortcomings: 1) it may drastically increase the event space;
and 2) the generated sequences can cause false alarms because
they may still violate critical time and physical constraints and
thus are actually invalid. Its fundamental limitation lies in the
fact it assumes the complete independence of individual events
and does not quantitatively consider their temporal contexts.

B. Threat Model

We consider that adversaries can trigger vulnerabilities in
benign (but faulty) PLC code via manipulation of configuration
options that impact important physical properties such as
machine speeds. In addition, we also consider that insiders can
compromise PLC source code to intentionally inject (stealthy)
safety violations (e.g., PLC logic bombs [41]). Note that
insider attacks are top security challenges [40], [64] for air-
gapped ICS and have been identified in major ICS incidents in-
cluding Stuxnet and the Maroochy Water Services Attack [23].
As a result, PLC source code and configurations may not be
trustworthy. Note though, we assume that the rest of the ICS
environment, including hardware and operating systems, as
well as our data collection mechanisms are trusted.

It is worth mentioning that, at this point, our work is mainly
focusing on the detection of safety violations. However, some
of the techniques we developed can also be useful to address
security challenges in the ICS context.

C. System Overview

To achieve our goal, we have developed VETPLC, that
consists of 3 major steps. Figure 4 illustrates its architecture.
We hope to deploy VETPLC as a vetting tool to examine any
PLC code before it is released for a production system.
(1) Generating Event Causality Graph. Given the PLC

and robot code, we first perform static program analyses
to extract the event causality graphs for interconnected
devices. We further leverage specified I/O mapping to
handle cross-device communication.

(2) Mining Temporal Invariants. Next, to understand those
quantitative temporal relations that cannot be revealed by

5

program code, we collect runtime data traces of PLC
variables from physical ICS testbeds. We then examine
the traces to infer the occurrences of particular events and
conduct data mining to discover temporal event invariants.

(3) Automated Safety Vetting with Timed Event Se-
quences. Constrained by the generated timed event causal-
ity graphs, we perform event permutations to automati-
cally create timed event sequences. Then, we apply the
generated sequences to exercise PLC code for dynamic
analysis. To automatically identify safety problems, we
formalize and craft safety specifications according to ex-
pert knowledge so as to perform runtime verification.

IV. TIMED EVENT CAUSALITY GRAPH

A. Key Factors

A naı̈ve approach to deriving event sequences is to consider
every combination of events. For instance, prior work has
presented a baseline approach, ALLSEQS [27], that exhaus-
tively permutes all UI events to create triggering sequences
for testing Android apps. However, due to the massive pos-
sible permutations, such a solution can be prohibitively time
consuming. In fact, not all permutations are valid sequences
because the causal dependencies of PLC events are inherently
constrained by controller code. To reduce the search space, we
can extract such dependencies from program logics in the first
place. Particularly, we are interested in three causal factors.
• Control-Flow. We take into account intra-procedural,

inter-procedural and cross-device control flow dependen-
cies: 1) within a function, event variables evaluated in an
IF-Condition have direct causal impact on those defined
in its IF-Clause; 2) for function calls, we consider that
the callsite in the caller causes all the logic in the callee;
3) cross-device event exchanges via mapped I/O indicate
the causal relations between code on multiple controllers.

• Constants. The constant value of an event-related vari-
able in an IF-Condition can partially determine if the
IF-Clause becomes effective. Thus, the dataflow from
the constant assignment to the condition check of this
variable indicates that the former causes the latter.

• Event Duration. The causal effect of events may last
for a certain amount of time when subsequent states are
maintained. Machines with local memory can produce
events with permanent states. The PLC can also help pre-
serve the states of transient signals (i.e., sensor readings)
or its internal events. In the meantime, event senders can
also proactively terminate signals based upon timing.

In addition to these internal factors, the occurrences of
events are also affected by external timing constraints caused
by physical actions, such as robot motion and external I/O
operations. We will discuss this in Section V.

B. Formal Definition

To interpret the internal constraints on event ordering,
we extract the causal and temporal relations among events
from PLC and robot code to generate dependency graphs. In
particular, we describe the cross-device event dependencies

Deliver_Part
P_OUT, (P)

Robot Side

PLC SidePallet_Sensor
P_IN, (P) ¬ Part_Sensor

P_IN, (P)

CNC_Part_Ready
P_IN, (P)

Robot_Ready
P_IN, (P)

¬ Part_AtConveyor
P_IN, (P)

Pallet_Arrival
P_Local, (P)

Update_Part_Process
P_Local, (P)

Part_AtConveyor
P_IN, (0.5s)

DI[0]
R_IN, (P)

DO[2]
R_OUT, (0.5s)

RFID_IO_Complete
P_IN, (P)

Update_Complete
P_Local, (P)

[15s, 20s]

[3s, 39.4s]

Fig. 5: The TECG of the Motivating Example
using Timed Event Causality Graphs (TECGs). At a high
level, a TECG is based upon the And-Or Graph [53] that can
illustrate the causalities among events and express their and/or
relationships. A formal definition is presented as follows.

Definition 1. A Timed Event Causality Graph is a directed
graph G = (V, E, α, β) over a set of events Σ and a set of
time durations T, where:
• The set of vertices V corresponds to the events in Σ;
• The set of edges E ⊆ V × V corresponds to the causal

dependencies between events, where the combination of all
immediate predecessors of a vertex can always cause this
successor event to happen. Specifically, if some of these
predecessor vertices form a conjunction, their outgoing edges
become compounded using an “arch”; if they form a disjunc-
tion, the corresponding edges are separated.
• The labeling function α : V → Σ associates nodes

with the labels of corresponding events, where each label is
comprised of 3 elements: event name, class and duration.

An event is named after the atomic proposition it affects.
For instance, if an event causes a==15 to be true, we name it
as “a==15”; if it causes Boolean c to be false, we refer to it as
“¬c”. We consider 6 classes of events, including input (P IN),
output (P OUT), local (P Local) events of PLC and those
of a remote device (R IN, R OUT, R Local). The event
duration is either Permanent (P), meaning it is always enabled
until turned off by PLC logic, or a finite amount of time.
• The labeling function β : E → T associates edges with

the labels of time intervals. These labels are concrete numbers
if we can retrieve the corresponding time intervals from ICS
testbeds; otherwise, they are “Indeterminate”.

C. TECG of Motivating Example

Figure 5 depicts the TECG of the motivating example. At
first, this automation system expects to receive events from
two sensors. The conjunction of a positive event, Pallet -

Sensor, and a negative one, ¬ Part Sensor, triggers the
PLC local event Pallet Arrival. Then, if all of the
4 events, Pallet Arrival, CNC Part Ready, Robot -

Ready and ¬ Part AtConveyor are received, the PLC will
signal the robot via an output event Deliver Part.

Hence, the conjunction of these four events leads to the
generation of Deliver Part, and such a causal dependency
is represented by the compounded edges from the former to the
latter. Further, Deliver Part is mapped to the robot event

6

DI[0], which causes the robot arm to function. Once its oper-
ation is completed, the robot turns on the output DO[2] and in
effect sends the event Part AtConveyor back to the PLC.
Thus, these events are connected due to cross-device control
dependencies. Since DO[2] (Part AtConveyor) terminates
in 0.5 seconds according to the robot code, its duration is
“0.5s” instead of “Permanent”.

In the meantime, when the conjunction of aforementioned 4
events is satisfied, another PLC local event Update Part -

Process will occur. This event causes a subroutine call, in
which PLC starts to update the process number encoded in the
RFID on the part. Once the update is done, the RFID replies
to the PLC with RFID IO Complete, which in turn triggers
Update Complete that the main routine expects.

By default, the time intervals of all edges are “Indeter-
minate”, and thus are not shown on this graph. We later
perform data mining on traces collected from ICS testbeds to
extract temporal invariants associated with certain edges, such
as Update Part Process

[3s,39.4s]−−−−−−→ RFID IO Complete.

D. Graph Construction

To generate TECGs, we perform static analyses that are
tailored for the unique programming paradigms of PLC code.

a) Special Consideration for PLC Scan Cycles: Prior
work has paid special attentions to PLC’s dedicated data types,
such as Timers and Counters [54], and its preemptive thread
scheduling model [43]. In addition, we believe that it is also
crucial to take into account PLC’s scan cycles that cause
implicit, yet significant impact, to entry points and dataflow
of PLC code. Nevertheless, to the best of our knowledge, this
has never been seriously explored in prior work.

Entry Point Discovery. PLC code is event-driven and thus
all its event handlers are program entry points. In contrast to
typical event-driven programs that use dedicated constructs to
explicitly implement event handling mechanisms, event han-
dlers in PLC code are implicitly defined using IF-Conditions.
Because internal value changes in one scan cycle do not
become effective until the next one begins, the IF-Conditions
in PLC code can only be affected by external inputs received at
the beginning of a cycle. Therefore, in effect, they act as event
handlers to capture either new sensor readings or updates from
last cycle. Hence, an IF-Condition becomes the entry point of
its IF-Clause code as well as the subroutines called by the IF-
Clause. For IF-Clause code wrapped by nested IF-Conditions,
we consider the inner-most one to be its entry point.

Dataflow Analysis. The fact that variables are of fixed
value in every cycle also causes the dataflow to change. As
explained in Section II, the process of dataflow analysis for
PLC code is mainly to track data dependencies between scan
cycles. Further, due to the existence of asynchronous event
handlers, the analysis should compute data reachability from
any “define” in one cycle to any “use” in the next.

b) Graph Construction Algorithm: Our algorithm for
generating timed event causality graphs is illustrated in Algo-
rithm 1. This algorithm expects to receive three inputs, PLC,
REMOTE and IOMapping. They represent PLC code, a set of

remote controller code (e.g., robot code) and the I/O mappings
between PLC and remote devices, respectively. Its output is
a timed event causality graph, TECG, which is comprised of a
set of edges. The I/O mappings are automatically established
when remote devices are added to the PLC and thus can be
retrieved from PLC configurations.

During initialization, we set TECG to be an empty set.
Next, we transform all predicates in the IF-Conditions of
PLC code into disjunctive normal form (DNF) in order to
illustrate them using an And-Or graph. Thus, an original
predicate becomes a set of sub-predicates connected via “OR”
logic, while each sub-predicate is a conjunction of events
depicted as compounded edges. Further, we retrieve all the
entry points (i.e., IF-Conditions) EP of PLC code. Meanwhile,
we also link neighbors of nested IF-Conditions to show their
control relations. Then, we iterate over every event (i.e., atomic
proposition) pin in EP and seek its root causes, which are
events or event combinations that can always lead to pin.

We first aim to discover the root causes for pin within the
PLC code. To this end, we perform use-def chain analysis
to obtain the definition set DEF of pin and then look for
the entry point EP (again, IF-Conditions) of each definition
def in DEF. The events in EP thus have causal impact on
def and on pin. To ensure the positive causal dependency
between EP and pin, we also conduct constant analysis for
def . If def is a constant and its value can satisfy pin, we
can then determine that EP can cause pin to happen. Hence,
we call TECG.ADDCOMPOUNDEDGES() to link EP with pin
and handle the construction of compounded edges.

It is worth noting that since IF-Conditions in one scan cycle
can be affected by any code in the previous one (dataflow-
wise), our use-def chain and constant analyses will look for
definitions from everywhere in PLC code. Ideally, we can con-
sider an infinite chain of scan cycles and compute backward
dataflow exhaustively in an iterative fashion. However, such
computation is excessively expensive. Besides, the generated
dependencies can be extremely complex (e.g., conditional
dependencies) and therefore may not be easily applied to event
sequence generation. Thus, in practice, we take a conservative
approach and only look back for one previous cycle. As a
result, our analysis may miss some dependencies in specific
conditions. Nevertheless, while missing a dependency may
lead to invalid permutations of events, it does not result in the
exclusion of valid event sequences. Moreover, our evaluation
shows that, although conservative, our analysis can already
help remove a large number of invalid sequences.

Besides searching for intra-PLC causalities, we also seek
possible root causes of pin across devices. Our cross-device
analysis starts from Ln.13. It is performed on an on-demand
basis and only begins when pin is mapped to an output of
a remote device. If pin indeed exists in the IOMapping,
we retrieve its mapped counterpart rout and add an edge
(rout, pin) into TECG. Then, we search for the entry point
REP for rout in the code of remote controller (e.g., robot,
CNC, PLC). The entry point REP represents the trigger of
rout. If any input rin in REP can be mapped to a PLC output

7

Algorithm 1 Construction of Timed Event Causality Graph
1: procedure BUILDTECG(PLC,REMOTE, IOMapping)
2: TECG← ∅
3: TRANSFROMPREDICATESTODNF(PLC)
4: EP← GETANDLINKENTRYPOINTS(PLC)
5: for ∀pin ∈ EP do
6: DEF← USEDEFCHAIN(PLC, pin)
7: for ∀def ∈ DEF do
8: if ISCONST(def) ∧ ISSATISFIED(pin, def) then
9: EP ← GETENTRYPOINT(PLC, def)

10: TECG.ADDCOMPOUNDEDGES(EP, pin)
11: end if
12: end for
13: if IOMapping.EXISTS(pin) then
14: rout← IOMapping.GET(pin)
15: TECG← TECG ∪ (rout, pin)
16: REP ← GETENTRYPOINT(REMOTE, rout)
17: for ∀rin ∈ REP do
18: if IOMapping.EXISTS(rin) then
19: pout← IOMapping.GET(rin)
20: TECG← TECG ∪ (pout, rin)
21: EP ← GETENTRYPOINT(PLC, pout)
22: TECG.ADDCOMPOUNDEDGES(EP, pout)
23: end if
24: end for
25: end if
26: end for
27: ADDEVENTCLASSANDDURATION(TECG, PLC,REMOTE)
28: return TECG
29: end procedure

pout, the edge (pout, rin) will be added to TECG as well. We
then trace back from pout to find its entry point EP in PLC
code, and add compounded edges from EP to pout.

The last step for graph construction is to annotate vertices
with event classes and durations. Event classes can be explic-
itly obtained from the variable declarations in PLC/CNC code
or robot specifications. The durations of all events by default
are set to be “Permanent” (P). Only if we can infer the concrete
time duration of an event, will we safely update its label. To
this end, for each input event (i.e., atomic proposition), we
first discover the constant definitions that cause the proposition
to be true. Then, we discover all the negative redefinitions
that lead the proposition to be false. Next, we perform intra-
procedural reachability analysis from the definitions to those
redefinitions. If a reachable path is discovered, we further
examine every statement along the path to see if any time-
related instructions (i.e., wait) are present. If so, we extract
and accumulate their constant parameters as the duration of
this event. We do not handle variable parameters in this work.

The implementation is further explained in Appendix B.

V. DISCOVERY OF TEMPORAL CONTEXT

A. Data Collection

Collecting Data Instead of Events. Ideally, we hope to
directly collect event traces from ICS testbeds to identify their
temporal behavior. However, this requires instrumentation of
various distributed data sources, including sensors, robot I/O
modules, RFID, etc. and therefore is an extremely difficult and
tedious task. On the contrary, the data trace of PLC variables is
easier to obtain due to standardized communication protocols.
Yet it only preserves the runtime states of these variables but
does not record the events that cause the states to transition.

To bridge this gap, we intend to infer the presence of events
based upon value changes in data traces and thus manage to
approximate the collection of discrete physical events with the
retrieval of continuous data traces.

Interesting Properties. We are interested in three properties
of PLC variables: name, value and timestamp. Variable name
serves as the unique identifier of a variable; the instant value
of a variable reflects its current state and can be affected by
specific events; the timestamp is the system time when the
variable is being observed. Thus, we can define a data item d
in our observation as a triple: d = (var name, value, time).

Querying Realtime Data in Recurring Operations. We
collect both positive and negative data traces from running
testbeds. A positive instance begins with the arrival of empty
pallet and ends in the successful departure of a loaded pallet,
and thus contains all the interesting stages such as robot
delivery and RFID update. A negative instance does not lead to
the successful stage due to multiple reasons, such as arriving
pallet loaded with part, robot not ready, CNC not ready, etc.
For every instance, we keep logging all the variable values over
time in order to retrieve runtime data traces. Formally, a data
trace DT is a list of data item d: DT = {d0, d1, ..., dn}. In
practice, we run Cell-1 logic 20 times and collect 10 positive
and 10 negative instances, each of which takes approximately
25 minutes. Thus, our dataset consists of a set of data traces
and we refer to it as: DT = {DT0, DT1, ..., DTm}, where
m = 19. We obtained 1.2 GB data in 10 hours from our
testbed that runs logic code containing 35 variables.

It is noteworthy that, although limited, our dataset in
practice can already help reveal the necessary invariants for
detecting real-world safety problems. One possible solution to
increase the amount and diversity of data traces is to follow
a state-of-the-art technique (i.e., code mutation [33]) and
automatically produce a large quantity of positive and negative
data traces to cover a majority of normal and abnormal cases.
We leave the systematic trace construction as future work.

B. Mining Temporal Properties

Inferring Discrete Events from Data Traces. For each
data trace DTi in our dataset DT, we need to first infer
the existence of events. To this end, we first divide every
DTi into multiple sublists {DT v0

i , DT v1
i , ..., DT vk

i } where
items in an individual list share the same variable name. We
then iterate over each sublist. If we discover a difference
between values of two neighboring items d′l and d′l+1, we
record a new event e = (type, time), where the type is
denoted using the new state of this variable and the time is
the timestamp of d′l+1. For instance, if the value of variable
Deliver Part rises from 0 to 1 at time 33, then we identify
an event (Deliver Part, 33); if Part AtConveyor’s value
drops from 1 to 0 at time 60, then we find an event (¬
Part AtConveyor, 60). Eventually, we merge discovered
events from all sublists and thus convert a data trace DTi into
an event trace ETi = {e0, e1, ..., ep}. We therefore obtain
a dataset of event traces ET = {ET0, ET1, ..., ET19}. The
formal algorithm is presented as Algorithm 3 in Appendix C.

8

TABLE I: Mined Invariants
Event Pair Invariant
�(Deliver Part→ ♦Part AtConveyor) [24.4s, 24.6s]
�(Update Part Process→ ♦RFID IO Complete) [15s, 20s]
�(Update Part Process→ ♦Update Complete) [15s, 20s]

Temporal Invariants for Events. Once we have generated
event traces, we would like to uncover constant time intervals
between events of different types. Such constants can reflect
the operation time of specific machines. However, in reality,
due to the variation in program paths and indeterminism of
mechanical, physical or chemical processes, the durations of
real-world machine operations are never constant. On the other
hand, due to physical and logical limits, machine actions are
bounded by time constraints. Hence, our goal is to identify
such “soft” invariants of event temporalities that fall into
specific ranges. We formally define temporal invariants using
Timed Propositional Temporal Logic (TPTL) [26]:

Definition 2. Let εa and εb be two event types. Then a
temporal invariant is a property that relates εa and εb in both
of the two following ways:
�tx.(εa → ♦ty.(εb∧ty−tx ≥ τlower)): In an event trace, if

an event instance of type εa occurs at time tx, then another of
εb eventually will happen in the same trace at a later time ty ,
while the time difference between ty and tx is at least τlower.
�tx.(εa → ♦ty.(εb∧ty−tx ≤ τupper)): In an event trace, if

an event instance of type εa occurs at time tx, then another of
εb eventually will happen in the same trace at a later time ty ,
while the time difference between ty and tx is at most τupper.

As a result, a temporal invariant describes not only the order
of two event types but also the lower and upper bounds of
their time difference. To extract these invariants, we follow the
approach in prior work (Synoptic [29] and Perfume [60]) to
perform qualitative and quantitative data mining consecutively.
However, unlike previous techniques that attempt to mine all
possible correlations between any two events, our mining is
selective and is guided by the generated TECG. Specifically,
we do not need to learn certain temporal relationships for a pair
of event types if they contradict the dependencies in the graph.
For example, in our motivating case, since we know the tem-
poral logic �(RFID IO Complete→ ♦Update Complete)
holds, we do not further seek the possibility of whether
Update Complete is followed by RFID IO Complete.

For all the pairwise relationships of two event types, εa and
εb, that do not contradict those in TECG, we first check if their
qualitative temporality �(εa → ♦εb) holds. This is equivalent
to checking if:

Follows[εa][εb] = Occurrence[εa] (1)
where Follows[εa][εb] counts, in a trace, the number of type
εa events followed by at least one of the type εb events and
Occurrence[εa] counts the number of event instances of εa.

Once we have determined the “followed by” relationship
between two event types, we use the Perfume [60] algorithm
to perform quantitative mining and extract the lower and
upper bounds of time differences. In the end, we discovered
3 invariants for the motivational case as listed in Table I.

Speed Reconfiguration of Real-world Machines. The
mined bounds of “soft” invariants, τlower and τupper, reflect

the variation in program executions and production processes.
However, such bounds are still associated with pre-configured
speeds of physical machines, which often times do not reach
the specified hard limits. To further understand the possible
impact caused by speed reconfiguration, we need to consider
absolute time bounds for these machine operations.

Let job be the number of machine operations and vconf be
the pre-configured speed, then τlower ≤ job/vconf ≤ τupper.
To derive the absolute lower bound for the time cost tjob, we
consider the rated motor speed vrated and thus have: (τlower×
vconf)/vrated ≤ job/vrated ≤ tjob.

Meantime, since the minimum machine speed theoretically
can be 0, the absolute maximum time to complete a task is
infinity. However, in reality, for a high throughput, machines
are expected to finish jobs as quickly as possible. Thus, ideally,
machines always operate at their highest speeds. Nevertheless,
safety standards have been made to regulate the maximum
machine speed. For instance, the American National Standards
Institute (ANSI) has published ANSI RIA R15.06 [22] for
Robot and Robot System Safety which recommends that robot
speed should not exceed 10 in/sec (250 mm/sec) for safety-
critical operations. Such recommendations can be considered
as the lowest machine speeds that can guarantee efficient and
safe production. With this required safety speed, vsafe, we can
further obtain the practical upper bound of tjob:
(τlower×vconf)/vrated ≤ tjob ≤ (τupper×vconf)/vsafe (2)
Admittedly, to incorporate hardware limits, we need to un-

derstand the semantics of mined invariants in order to associate
this additional information to correct edges. We currently
address this problem using human knowledge and leave the
automatic inference of event semantics as future work. With
domain knowledge, we know the time for our robot to pass a
part equals the time difference between Delivery Part and
Part AtConveyor. Plus, our robot is running at 400mm/sec
on average and its rated speed is 3300mm/sec. Thus, we can
obtain an enhanced invariant for this event pair: [3s, 39.4s].

Enhancing TECG with Temporal Invariants. Extracted
temporal invariants are then provided to the TECG. Note
that they not only offer quantitative information to enhance
the existing temporal relations in the graph but may also
introduce new temporal dependencies. This is because the
code we analyze represents only a partial view of the entire
ICS environment and therefore does not contain all the event
relations. As a complement, mining runtime data traces offers
a holistic view of the plant and can further uncover implicit
dependencies hidden from controller code.

VI. SAFETY VETTING WITH TIMED EVENT SEQUENCES

A. Timed Event Sequences

Once we have constructed the TECG, we can generate event
sequences based upon this graph. The major challenge is how
to create event permutations that conform to the quantitative
dependencies illustrated by TECG. Generally speaking, to
encode the mined time range of an event (i.e., “soft” temporal
invariant) into a sequence, we discretize the continuous range

9

Algorithm 2 Generation of Timed Event Sequences
1: procedure BUILDTSEQS(TECGin, ρ)
2: Setevent ← GETEVENTSET(TECGin)
3: Set′event ← DISCRETIZE(Setevent, ρ)
4: SEQ← PERMUTE(Set′event)
5: for ∀SEQ ∈ SEQ do
6: for ∀ev ∈ SEQ do
7: Path← FINDALLSOLUTIONS(TECGin, ev)
8: if @path ∈ Path : path ⊆ SEQ.SUBSEQ(0, ev) then
9: SEQ← SEQ− SEQ

10: end if
11: end for
12: end for
13: return SEQ
14: end procedure

to multiple time slices and introduce a versioned event for
each slice to represent its possible occurrences. To reflect the
qualitative relations among events, we check every possible
permutation against the graph, so as to guarantee the prereq-
uisite for each event happens before its occurrence.

Our algorithm BUILDTSEQS is presented in Algorithm 2. It
takes two arguments. The first one is TECGin, a reduced version
of TECG, which preserves solely the nodes that are PLC inputs.
These input events are the necessary ones to exercise the PLC
code. The second argument ρ is the discretization parameter
that indicates the number of slices every time duration is
divided into. On startup, our algorithm first retrieves all the
events in the graph TECGin to generate an event set Setevent.
Next, for any event in Setevent, whose starting time is within
a certain range (i.e., its incoming edge is labeled with an
invariant), the range is discretized using ρ to create multiple
versioned events. We then replace the original event with a
set of versioned ones. For instance, since Part AtConveyor

is enabled 3 to 39.4 seconds after Deliver Part, it is
discretized to be a set {P ACT+3, P ACT+10, P ACT+18,
P ACT+25, P ACT+32, P ACT+39} when ρ is 5.

Hence, we extend Setevent to be a new set Set′event. Then,
we permute all the events in Set′event to create sequences.
Notice that in every permutation, only one versioned event
from the same set can be chosen. The result of this PERMUTE
is a set SEQ containing all candidate sequences. We further
check each candidate SEQ to see if it contradicts the causalities
indicated by TECGin, and if so, it will be discarded. To do so,
we iterate over each event ev in a sequence SEQ, and find all
the “solutions” for ev on its hosting and-or graph TECGin. A
solution for ev is a path, from ev to a top-level vertex, which
includes all of its prerequisites that are required to cause ev to
happen. If any solution path is covered by the subsequence
from the first element of SEQ to ev, we keep this candidate
SEQ. Otherwise, it is removed from SEQ. Finally, we output
the result SEQ as the generated timed event sequences.

For our motivating example, we can create a timed
sequence, 1:Pallet Sensor 2:¬ Part Sensor
3:CNC Part Ready 4:Robot Ready 5:¬ Part -

AtConveyor 6:Part AtConveyorT+10 7:RFID -

IO CompleteT+20, which can lead to the safety violation
due to premature termination of 6:Part AtConveyorT+10.
Detailed implementation can be found in Appendix D.

Selection of ρ. A naı̈ve way for discretizing a time range
is to merely consider its lower and upper bounds (i.e., ρ = 1).
Theoretically, it is sufficient to detect the possible presence of
timing-related safety violations. However, this is too coarse-
grained and can only tell if an error will occur when a machine
operates at its maximum or minimum speed. On the contrary, it
is in fact crucial to understand the range of machine speeds that
can lead to errors. Such contextual evidence can help security
investigators draw a better conclusion whether a logic error is
caused by attacks. For example, prior work [38] has correlated
the narrowness of an error trigger with its malice. Thus,
ideally, we expect to always select a larger ρ. However, the
increase in time slices also leads to the growth of total number
of permutations. To understand how to strike a balance, we
have an empirical study in the evaluation. Nevertheless, it
is noteworthy that, while a better ρ can provide informative
evidence with lower cost, the selection of ρ does not affect
whether we can detect a safety defect.

B. Safety Specification

The event sequences that we generate can facilitate auto-
mated path exploration for testing PLC code. However, the fact
that we can reach an unsafe state does not necessarily mean
we can automatically detect the problem. To enable automated
detection, we need to further specify certain safety rules and
programmatically verify them at runtime.

Prior work [54] has adopted linear temporal logic (LTL)
to formally define safety requirements for ICSs. However,
at runtime, it is hard to enforce an LTL-based rule which
requires an activity to be followed by another (e.g., overflow
avoidance), because the absence of a required event during
limited test time does not suggest its absence at a later
time. Although, in practice, these required actions must be
accomplished within a certain amount of time, LTL however
is not capable of describing such temporal relations in a
quantitative fashion. To address this limitation, we again use
TPTL [26] to quantitatively express safety specifications.

Definition 3. Let P be a set of atomic logical proposi-
tion symbols about the system {p1, p2, ...p|A|}, e.g., sensor
Pallet Sensor is on, and let Σ = 2A be a finite alphabet
composed of these propositions. Then, the set of TPTL-based
Safety Requirements is inductively defined by the grammar:
π := x+ c | c
φ := p|π1 ≤ π2|π1 ≡d π2|false|φ1 → φ2| © φ|φ1Uφ2|x.φ
The grammar of TPTL is further explained in Appendix E.

Table II demonstrates 5 typical classes of safety specifications,
which have been studied by previous academic work or
required by OSHA (Occupational Safety and Health Admin-
istration). We categorize the policies based on the root causes
of industrial hazards. First, a majority of safety incidents are
caused by dangerous machine-machine interactions, including
machine collision, machines facing overflow or underflow due
to upstream machines. Second, failure to separate humans
from life-threatening machines may result in fatal accidents.
Last but not least, individual machines, even without interac-

10

TABLE II: Categories of Safety Specifications
Typical Hazard Example Specification to Avoid Hazard Formal Definition References
Collision Whenever conveyor belt starts running, a robot arm cannot come down to pick up items. �(Conveyor Running→ ¬♦Robot Pickup) TSV [54]
Overflow Once a pallet enters a cell, the stopper must be retracted within 30 seconds to release it. �tx.(Pallet→ ♦ty.(Retract ∧ ty − tx ≤ 30s)) Motivating Example
Underflow When water purification starts, water level of tanks must not below L. �(Purify Start→ ¬♦(water level ≤ L)) Chen et al. [33]
Non-Separation When the gate for robot is opened, robot must stop working. �(Gate Open→ ¬♦Robot On) OSHA Instr. [59]
Danger Zone Upon start, the frequency of a motor in a nuclear centrifuge is between 807 and 1210 Hz. �(Start→ �(807Hz ≤ speed ≤ 1210Hz)) Stuxnet Dossier [36]

tion with any other entities, can still result in critical damage
because they operate spatially or temporally in unsafe zones.

C. Trace-based Verification.

We carry out runtime verification based upon execution
traces of PLC code. Note that, while in our testbeds, all
controllers (i.e., for PLCs, robots, CNCs) can physically
operate and thus produce real events, in our simulations, we
only analyze PLC code while modeling and simulating the
inputs (i.e., events) from remote devices.

Particularly, we first run a PLC program repeatedly, while
each time we exercise the code using an individual event
sequence. To this end, we convert PLC ST programs into
C code using the MATIEC compiler [13] and then utilize a
PLC simulator [14] to execute the code. To produce execution
traces, we further instrument the generated C code to dump
all instructions and variable values that originated from PLC
code. In the end, we conduct runtime verification for TPTL
specifications on the traces. In theory, we can follow a prior
approach [32] to perform comprehensive interpretation and
translation of TPTL languages. However, since our safety
specifications are defined at a high level and usually straight-
forward, thus, in practice, our runtime monitor only focuses on
this small subset that we use to describe safety requirements.

VII. EVALUATION

A. Experimental Setup

To evaluate the effectiveness and efficiency of our approach,
we follow the methodology of previous studies [33], [43],
[54] to test VETPLC on different PLC programs. However,
in contrast to prior work that experimented on either synthe-
sized PLC code without necessary physical contexts [43] or
simple, isolated logic without machine interactions (e.g., traffic
lights) [54], we apply VETPLC to real-world PLC programs
that are tightly coupled with specific scenarios involving
interconnected physical devices. To further demonstrate the
generality of VETPLC, unlike Chen et al.’s work [33] that
focused on only one particular testbed, we hope to evaluate
our system on multiple scenarios for different ICS settings.

This, however, is a challenging task because it requires
a deep understanding of both physical and logical domains
of real-world control systems. Nevertheless, we developed 10
scenarios on two realistic testbeds, SMART and Fischertechnik,
that have completely different physical compositions. The
SMART testbed has been introduced in Section III. The Fis-
chertechnik testbed (Figure 10) is a miniature that emulates
consecutive processing of parts. It connects 4 cells and 2 push
rams using multiple conveyors and sensors, while each cell
consists of a PLC and a CNC machine. Interested readers can
refer to Appendix F to learn more details about this testbed.

Table III lists the 10 scenarios from these two testbeds.
We perform causality graph generation, invariant mining,
event sequence construction and safety vetting on them. Our
experiments have been conducted on a test machine equipped
with Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and 16GB
of physical memory. The OS is Ubuntu 16.04.4 LTS (64bit).

B. Result Overview

To show the effectiveness of VETPLC, we would like to
carry out comparative experiments. Unfortunately, existing
work on PLC vetting, such as TSV [54] or SYMPLC [43],
cannot generate event sequences to automatically analyze real-
world event-driven PLC code. Nevertheless, these state-of-the-
art analyzers can always be enhanced to handle event-driven
code if they adopt ALLSEQS [27] to calculate all possible
event permutations. Therefore, we implement an ALLSEQS-
based baseline safety analyzer for the comparison purpose.

We apply VETPLC and the baseline analyzer to our 10
scenarios, and study 3 methods that create event sequences:
1) the baseline (ALLSEQS), 2) using VETPLC to generate
untimed event sequences (VETPLC-SEQS), and 3) applying
VETPLC to timed sequence generation. When creating timed
sequences, we select three different discretization parameters,
ρ = 2 (VETPLC-TSEQS-2), ρ = 5 (VETPLC-TSEQS-5) and
ρ = 10 (VETPLC-TSEQS-10). Figure 6 depicts the number of
sequences each method creates, while Table IV demonstrates
whether generated event sequences can lead to the discovery
of safety violations. Further, for safety-related errors triggered
by timed event sequences, the table also shows the ranges of
corresponding machine speeds that can cause the problem.

As shown in the table, pure ordering-based event per-
mutations, ALLSEQS and VETPLC-SEQS, cannot lead to
the hidden safety violations in timing-sensitive PLC code.
We do observe, from Figure 6, a dramatic decrease (up to
96%) of event permutations for VETPLC-SEQS (green curve)
compared to ALLSEQS (red curve). Although the decline of
possible event sequences results in much less analysis runtime
overhead, it does not affect whether a violation can be detected
in our cases. However, provided that a timing-insensitive safety
problem can be detected by ALLSEQS, VETPLC can achieve
it two orders of magnitude faster.

In contrast, all the timed event sequences can result in
safety problems. In fact, some of the error cases, such as
conveyor overflow and frozen robots, can in fact be observed
occasionally from our testbeds during daily work but cannot be
easily diagnosed manually. VETPLC not only helps uncover
their root causes but also finds other, previously unknown,
problems. Although the vulnerabilities detected in our work all
originate from human mistakes, it is also possible for insiders
to actively inject safety faults into PLC source code. Note
that, however, VETPLC can detect any safety violations in

11

TABLE III: Scenarios of Safety Violations
Scenario Name Testbed Description of Hazard Safety Specification to Avoid Hazard
1 Conveyor Overflow #1 SMART Motivating Example. See Section III �tx.(Pallet→ ♦ty .(Retract Stopper ∧ ty − tx ≤ 30s))
2 Robot in Danger Zone SMART Robot fails to return its safe zone. �tx.(¬Safe Zone→ ♦ty .(Safe Zone ∧ ty − tx ≤ 60s))
3 Conveyor Overflow #2 SMART Robot stops processing parts from conveyor due to signal conflicts. �tx.(Pallet→ ♦ty .(Retract Stopper ∧ ty − tx ≤ 30s))
4 Part-Gate Collision SMART A pallet collides with a closed gate. �(Pallet AtGate→ �Gate Open)
5 CNC Overflow SMART CNC stops processing parts from gantry due to missing signals. �tx.(Part In→ ♦ty .(Part Out ∧ ty − tx ≤ 5m))
6 Ram-Part Collision Fischer. A ram starts pushing when a part has not fully entered the ram. �(Part Entering→ ¬♦Ram Push)
7 CNC-Part Collision Fischer. A part is passed to CNC when a preceding part is not fully discharged. �(CNC Busy→ ¬♦Part Arrival)
8 Conveyor Overflow #3 Fischer. Parts are pushed to conveyor prematurely. �tx.(Part Arrival→ ♦ty .(Part Arrival ∧ ty − tx ≤ 6s))
9 Conveyor Underflow Fischer. A conveyor belt halts operation. �tx.(Part Arrival→ ♦ty .(Part Arrival ∧ ty − tx ≥ 8.5s))

10 Ram-Part Collision #2 Fischer. Ram1 pushes a part to unprepared Ram2. �(Part Entering→ �Ram Ready)

PLC source code, regardless of whether they are introduced
by developers or malicious logic injected by insiders.

In addition, we notice that a finer-grained time discretization
may lead to a more precise error-triggering (speed range) con-
straints. For instance, for Scenario #8, the sequences produced
by VETPLC-TSEQS-5 reveal that a push ram at speeds from
1714 to 2000 rpm can cause errors, while those of VETPLC-
TSEQS-2 only indicate that it malfunctions at the minimum
speed of 1714 rpm. Some cases, such as Scenario #7, may
include multiple machines with variable speeds, and thus we
compute the error-triggering ranges individually.

Nevertheless, the precision improvement of speed ranges
comes at a price. As we discretize time into more factions, the
amount of event sequences also grows significantly. Figure 6
illustrates that, compared to ALLSEQS, VETPLC-TSEQS-2,
VETPLC-TSEQS-5 and VETPLC-TSEQS-10 on average yield
38%, 93% and 226% of sequences, respectively. Nonetheless,
the increase of time fractions does not always lead to an
improvement of error ranges. The difference between TSEQS-
5 and TSEQS-10 is not as significant as that between TSEQS-2
and TSEQS-5. Yet the increase of permutations for TSEQS-10
is drastic. As a result, empirically, we can see that TSEQS-5
strikes a balance between efficiency and precision.

C. Case Study

We perform case studies on two scenarios. The study on
Scenario #2 is presented here while the study on Scenario #7
is elaborated in Appendix G.

Scenario Description. Scenario #2 depicts the interaction
among a PLC, a robot and a CNC in Cell 2. Here, the robot
carries a part into CNC cabinet, places it on CNC table and
moves out. It then pauses at a temporary position and waits for
further instructions from PLC. Normally, CNC senses a part’s
arrival from its table and notifies the PLC of the receipt. Then,
the PLC signals the robot, allowing it to return to its safe zone,
while the CNC begins to process the part.

Timed Event Causality Graph. Figure 7 illustrates the
TECG constructed from PLC, robot and CNC (slave PLC)
code. The causal relation between Deliver Part to CNC

and Part Delivered indicates the request and response
between PLC and robot. The duration of Part Present

extracted from CNC code is 1 second. However, the controller
code cannot reveal the implicit relation between PLC sending
a request to robot and CNC receiving a part, because the PLC
does not directly send commands to the CNC. Fortunately,
VETPLC can recover this dependency via invariant mining
and thus introduce a new edge Deliver Part to CNC →
Part AtTable, depicted by the bold line. Besides, data

mining also discovers the robot delivery time, corresponding
to Robot Start

[0.5s,6.6s]−−−−−−→ Robot Standby.
Automated Safety Vetting. TECG helps reduce the amount

of possible event permutations from 13700 to 446. We further
obtain 2366, 8846 and 29246 timed sequences for TSEQS-
2, TSEQS-5, TSEQS-10, respectively. Using these timed se-
quences to exercise the PLC code, we discover a safety
violation that the robot, running at certain speeds, cannot
return to its safe zone. Particularly, TSEQS-5 can provide
a relatively precise error-triggering range [250 mm/sec, 959
mm/sec] with a relatively low time cost (8846 permutations).

Root Cause. This problem is caused by event timings and
thus is not revealed by ordering-based sequences. Since Part -

Present only lasts for 1 second, when PLC receives Part -

Delivered from the robot, the former event may have already
terminated. Then, PLC will not permit the robot to move back
due to missing necessary signals. Such a problem can only be
observed when the robot speed falls into the discovered range.

Security Implication. Our analysis results do not auto-
matically infer the intent of safety violations, but they do
serve as contextual evidence that can help investigators draw
correct conclusions. Prior work [38] has indicated that attacks
are likely to be triggered under very narrow conditions (e.g.,
logic bombs) to evade detection; Stuxnet [36] code injected by
insiders runs only when the target system operates between
807 Hz and 1210 Hz – a unique frequency range used for
nuclear centrifuges. Hence, if the vulnerabilities are injected
by insiders, VETPLC must find their narrow triggering ranges.
Otherwise, we must not provide a misleading result implying
the error can happen only when robot runs at very low speed
[250 mm/s, 465 mm/s] or its highest speed 3300 mm/s.
Instead, we must discover a precise error-trigger range, e.g.,
[250 mm/s, 959 mm/s] for robot speed.

D. Runtime Performance

It takes on average 203s to construct graphs for one
scenario. The computation time is acceptable because our
analyses are designed to be straightforward and real-world
PLC code is not very complex. The runtime of trace-based
verification is proportional to the number of testing sequences,
and thus is comparable to that of ALLSEQS, while each run
takes approximately 55 seconds.

VIII. DISCUSSION

Scalability. Our testbeds are smaller in size, but they
accurately represent certain plants that manufacture specific
products. For instance, a small-scale plant, such as an aircraft
seating factory consisting of 20 CNCs, often organizes its

12

Fig. 6: No. of Event Sequences

ALLSEQS VETPLC-SEQS VETPLC-TSEQS-2 VETPLC-TSEQS-5 VETPLC-TSEQS-10
1 N N Y Robot:[3300,3300] Y Robot:[550,3300] Y Robot:[550,3300]
2 N N Y Robot:[250,465] Y Robot:[250,959] Y Robot:[250,1486]
3 N N Y Robot:[465,465] Y Robot:[307,959] Y Robot:[275,1486]
4 N N Y Robot:[250,467] Y Robot:[250,399] Y Robot:[250,467]
5 N N Y Robot:[3300,3300] Y Robot:[550,3300] Y Robot:[550,3300]
6 N N Y Ram:[1714,1714] Y Ram:[1714,2000] Y Ram:[1714,2000]
7 N N Y CNC1:[3273,6000] Y CNC1:[2571,6000] Y CNC1:[2571,6000]

CNC2:[1714,2667] CNC2:[1714,4000] CNC2:[1714,4000]
8 N N Y Ram:[1714,1714] Y Ram:[1714,2000] Y Ram:[1714,2000]
9 N N Y Ram:[2667,6000] Y Ram:[2400,6000] Y Ram:[2000,6000]

10 N N Y Ram:[2667,6000] Y Ram:[2000,6000] Y Ram:[2000,6000]

TABLE IV: Detection Results

Deliver_Part_to_CNC
P_OUT, (P)

PLC Side Pallet_Sensor
P_IN, (P)

Part_Sensor
P_IN, (P)

CNC_Ready
P_IN, (P)

Robot_Ready
P_IN, (P)

¬	Part_Delivered
P_IN, (P)

Pallet_Arrival
P_Local, (P)

CNC Side

Part_AtTable
R_IN, (P)

Part_Present

Robot Side

Robot_Start
R_IN, (P)

Robot_Standby
R_OUT, (P)

Robot_Go_Home
R_OUT, (P)

Part_AtCNC
P_IN, (1.0s)

Part_Delivered
P_IN, (P)

R_OUT, (1.0s)

[0.5s, 6.6s]

Fig. 7: A TECG of Case #2 (Robot in Danger Zone)
CNCs into multiple serial cells where up to 6 parallel machines
work in the same cell on the same workloads. Thus, the
amount of manufacturing steps and data communication in
such a factory is comparable to that of ours. We admit that
once a manufacturing system is scaled up, more computation
power will be required to conduct our analysis and data
mining. To address this challenge, one possible solution is
to take advantage of the inherent parallelism to scale the
computation. Due to the hierarchical architecture of factory
floors, it is possible to divide an entire plant into multiple
relatively independent groups, each of which can be analyzed
individually. The summarized results of individual groups can
be combined to carry out an analysis of the entire factory.

Specific Challenges to PLC Code Analysis. When com-
pared to analyzing programs in other domains (e.g., Android
apps, web programs), the analysis of PLC code is inherently
unique due to three reasons. (a) PLC code controls multiple
types of customized hardware constrained by unique phys-
ical limits. (b) PLC software follows a unique programming
paradigm due to the introduction of PLC scan cycles. (c) Most
importantly, PLC events are highly time-sensitive, due to the
physical nature of machines. Such time sensitivity is the exact
cause of certain safety problems discovered in our work.

IX. RELATED WORK

Safety Verification of PLC Code. Many prior efforts [24],
[28], [30], [31], [42], [44], [57], [58], [61], [63], [65] have been
made to statically verify logic code using model checkers [15],
[21]. Further efforts have also been made to conduct runtime
verification in an online [39], [45] or offline manner [35], [62].
More recently, symbolic execution [43], [54] has been enabled
on PLC code. While TSV [54] conducted static symbolic
execution on its temporal execution graphs, SymPLC [43]
leveraged OpenPLC [16] framework and Cloud9 engine [4]
to conduct dynamic analysis. In contrast, VETPLC aims to
verify real-world PLC code, which is driven by events.

Mining Temporal Invariants. Synoptic [29] and Per-
fume [60] extracted temporal invariants from conventional
system logs via data mining. Different from OS events, ICS
events are created by distributed sources on the factory floor
and are difficult to obtain. Recently, ARTINALI [25] mined
temporal properties from smart meters and medical devices to
enable intrusion detection. To detect anomalies in ICS, Chen
et al. [33] managed to learn invariants from data traces of
a water purification testbed. As a comparison, VETPLC also
mines ICS invariants but addresses a different problem.

Exercising Event-Driven Programs. Anand et al. [27] pro-
posed to generate GUI event sequences based upon concolic
testing. Mirzaei et al. [55] correlated events with their handlers
for generating Android-specific drivers. AppIntent [67] relied
on Android lifecycle model to produce event-space constraint
graphs. Jensen et al. [46] built event sequences based upon
concolic execution and Android GUI model. kudzu [66] devel-
oped a GUI explorer that randomly searches Web event space.
SymJS [51] discovered Web event sequences via a feedback
directed exploration and dynamic taint analysis. SymRT [52]
performed timing analysis for real-time Java systems based
upon symbolic execution and model checking. Lee et al. [48]
proposed to create test sequences from Modechart specifica-
tions. In contrast, VETPLC can automatically discover both
event ordering and timing without predefined specifications.

Event Causality. Orpheus [34] modeled program behaviors
based upon CPS events, and applied these models to anomaly
detection. Zhang et al. [68] detected malware via the infer-
ence of triggering relations between events in network data.
Compared to the prior work which studied qualitative event
causalities, VETPLC takes a step further and quantitatively
recovers event timings that are critical for PLC code analysis.

X. CONCLUSION

We propose VETPLC, a novel approach to automatically
produce timed event sequences for PLC code vetting. The
evaluation of our prototype on two real-life ICS testbeds shows
that VETPLC can effectively generate event sequences which
automatically lead to hidden safety violations.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers and our
shepherd, Prof. Daphne Yao, for their feedback in finalizing
this paper. This research was supported in part by NSF
Grant CNS-1544613, CNS-1544901, CNS-1544678 and CNS-
1718952. Any opinions, findings, and conclusions made in this
material are those of the authors and do not necessarily reflect
the views of the funding agency.

13

REFERENCES

[1] “ABB RAPID Veteran, a few question about FANUC KAREL,”
https://www.robot-forum.com/robotforum/fanuc-robot-forum/abb-
rapid-veteran-a-few-question-about-fanuc-karel/.

[2] “Antlr,” http://www.antlr.org/.
[3] “Clang: a C language family frontend for LLVM,” https://clang.llvm.

org/.
[4] “Cloud9 - Automated Software Testing at Scale,” http://cloud9.epfl.ch/.
[5] “Conveyor Belts Optimisation,” https://www.standard-industrie.com/

en/wp-content/themes/standardindustrie/img/CONVEYOR BELT
OPTIMISATION.pdf.

[6] “Conveyors and Falling Item Prevention,” http://www.cisco-eagle.com/
blog/2015/08/20/conveyors-and-falling-item-prevention/.

[7] “Cooperation and Control: A Systems Perspective,” https:
//me.engin.umich.edu/news-events/news/cooperation-and-control-
systems-perspective.

[8] “Ethernet/ip,” https://en.wikipedia.org/wiki/EtherNet/IP.
[9] “Foundations For Conveyor Safety Book,” http://

martinengineerings3.s3.amazonaws.com/www.martin-eng.de/download/
FoundationsForConveyorSafetyBook.pdf.

[10] “IEC 61131-3,” https://en.wikipedia.org/wiki/IEC 61131-3.
[11] “Industrial Control Systems Killed Once And Will Again, Experts

Warn,” https://www.wired.com/2008/04/industrial-cont/.
[12] “Industry 4.0,” https://en.wikipedia.org/wiki/Industry 4.0.
[13] “MATIEC - IEC 61131-3 compiler,” https://bitbucket.org/mjsousa/

matiec.
[14] “MATIEC examples,” https://github.com/Felipeasg/matiec examples.
[15] “NuSMV: a new symbolic model checker,” http://nusmv.fbk.eu/.
[16] “OpenPLC Project,” http://www.openplcproject.com/.
[17] “PLC Manufacturer Rankings,” http://automationprimer.com/2013/10/

06/plc-manufacturer-rankings/.
[18] “Programmable Logic Controller,” https://en.wikipedia.org/wiki/

Programmable logic controller.
[19] “Robot kills worker at Volkswagen plant in Germany,”

https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-
at-volkswagen-plant-in-germany.

[20] “Structured Text Tutorial to Expand Your PLC Programming Skills,”
http://www.plcacademy.com/structured-text-tutorial/.

[21] “UPPAAL Home,” http://www.uppaal.org/.
[22] “ANSI/RIA R15. 06: 2012 Safety Requirements for Industrial Robots

and Robot Systems,” Ann Arbor: Robotic Industries Association, 2012.
[23] M. Abrams and J. Weiss, “Malicious Control System Cyber Security

Attack Case Study – Maroochy Water Services, Australia,” https://www.
mitre.org/sites/default/files/pdf/08 1145.pdf.

[24] A. Aiken, M. Fähndrich, and Z. Su, “Detecting Races in Relay Ladder
Logic Programs,” in Tools and Algorithms for the Construction and
Analysis of Systems, 1998.

[25] M. R. Aliabadi, A. A. Kamath, J. Gascon-Samson, and K. Pattabiraman,
“ARTINALI: Dynamic Invariant Detection for Cyber-physical System
Security,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017), Sep 2017.

[26] R. Alur and T. A. Henzinger, “A Really Temporal Logic,” J. ACM,
vol. 41, no. 1, Jan. 1994.

[27] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated Concolic
Testing of Smartphone Apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(FSE ’12), 2012.

[28] B. Beckert, M. Ulbrich, B. Vogel-Heuser, and A. Weigl, “Regression
Verification for Programmable Logic Controller Software,” in Formal
Methods and Software Engineering, 2015.

[29] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging Existing Instrumentation to Automatically Infer Invariant-
constrained Models,” in Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software
Engineering (ESEC/FSE ’11), Sep 2011.

[30] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: A Verification
Platform for Programmable Logic Controllers,” in Proceedings of the
27th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2012), Sep 2012.

[31] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen,
“Towards the Automatic Verification of PLC Programs Written in
Instruction List,” in Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, Feb 2000.

[32] M. Chai and B.-H. Schlingloff, “A Rewriting based Monitoring Algo-
rithm for TPTL,” vol. 1032, pp. 61–72, Jan 2013.

[33] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from Mutants: Using Code
Mutation to Learn and Monitor Invariants of a Cyber-Physical System,”
in 2018 IEEE Symposium on Security and Privacy (Oakland’18), May
2018.

[34] L. Cheng, K. Tian, and D. D. Yao, “Orpheus: Enforcing Cyber-Physical
Execution Semantics to Defend Against Data-Oriented Attacks,” in Pro-
ceedings of the 33rd Annual Computer Security Applications Conference
(ACSAC 2017), Dec 2017.

[35] J. Dzinic and C. Yao, “Simulation-based Verification of PLC Programs
Master of Science Thesis in Production Engineering,” Master’s thesis,
Chalmers University of Technology, Sweden, 2013.

[36] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,”
https://www.symantec.com/content/en/us/enterprise/media/security
response/whitepapers/w32 stuxnet dossier.pdf.

[37] G. Fedorko, V. Molnar, D. Marasova, A. Grincova, M. Dovica, J. Zivcak,
T. Toth, and N. Husakova, “Failure Analysis of Belt Conveyor Damage
caused by the Falling Material. Part II: Application of Computer
Metrotomography,” Engineering Failure Analysis, vol. 34, pp. 431 –
442, 2013.

[38] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “TriggerScope: Towards Detecting Logic Bombs in Android
Applications,” in 2016 IEEE Symposium on Security and Privacy
(Oakland), May 2016.

[39] L. Garcia, S. Zonouz, D. Wei, and L. P. de Aguiar, “Detecting PLC
control corruption via on-device runtime verification,” in 2016 Resilience
Week (RWS), Aug 2016.

[40] A. Ginter, “The Top 20 Cyber Attacks Against Industrial Control
Systems,” https://ics-cert.us-cert.gov/sites/default/files/ICSJWG-
Archive/QNL DEC 17/Waterfall top-20-attacks-article-d2%20-
%20Article S508NC.pdf.

[41] N. Govil, A. Agrawal, and N. O. Tippenhauer, “On Ladder Logic Bombs
in Industrial Control Systems,” in CyberICPS/SECPRE@ESORICS, Sep
2017.

[42] J. F. Groote, S. F. M. van Vlijmen, and J. W. C. Koorn, “The Safety
Guaranteeing System at Station Hoorn-Kersenboogerd,” in Computer
Assurance, 1995. COMPASS ’95. Systems Integrity, Software Safety and
Process Security. Proceedings of the Tenth Annual Conference on, Jun
1995.

[43] S. Guo, M. Wu, and C. Wang, “Symbolic Execution of Programmable
Logic Controller Code,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017), Sep 2017.

[44] R. Huuck, “Semantics and Analysis of Instruction List Programs,”
Electronic Notes in Theoretical Computer Science, vol. 115, pp. 3–18,
2005.

[45] H. Janicke, A. Nicholson, S. Webber, and A. Cau, “Runtime-Monitoring
for Industrial Control Systems,” Electronics, vol. 4, no. 4, pp. 995–1017,
dec 2015.

[46] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated Testing with
Targeted Event Sequence Generation,” in Proceedings of the 2013 In-
ternational Symposium on Software Testing and Analysis (ISSTA 2013),
Jul 2013.

[47] I. Kovalenko, M. Saez, K. Barton, and D. Tilbury, “SMART: A System-
Level Manufacturing and Automation Research Testbed,” Smart and
Sustainable Manufacturing Systems, vol. 1, no. 1, pp. 232–261, 2017.

[48] N. H. Lee and S. D. Cha, “Generating Test Sequences Using Symbolic
Execution for Event-Driven Real-Time Systems,” Microprocessors and
Microsystems, vol. 27, pp. 523–531, 2003.

[49] R. M. Lee, M. J. Assante, and T. Conway, “German Steel
Mill Cyber Attack,” https://ics.sans.org/media/ICS-CPPE-case-Study-2-
German-Steelworks Facility.pdf.

[50] R. Lee, M. Assante, and T. Conway, “Analysis of the Cyber Attack
on the Ukrainian Power Grid,” https://www.nerc.com/pa/CI/ESISAC/
Documents/E-ISAC SANS Ukraine DUC 18Mar2016.pdf.

[51] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic
Testing of JavaScript Web Applications,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014), Nov 2014.

[52] K. S. Luckow, C. S. Păsăreanu, and B. Thomsen, “Symbolic Execution
and Timed Automata Model Checking for Timing Analysis of Java Real-
Time Systems,” EURASIP Journal on Embedded Systems, vol. 2015,
no. 1, Sep 2015.

14

[53] A. Martelli and U. Montanari, “Additive AND/OR Graphs,” in Proceed-
ings of the 3rd International Joint Conference on Artificial Intelligence
(IJCAI’73), Aug 1973.

[54] S. McLaughlin, S. Zonouz, D. Pohly, and P. McDaniel, “umia,” in
Proceedings of the 2014 Network and Distributed System Security
Symposium (NDSS’14), Feb 2014.

[55] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood,
“Testing Android Apps Through Symbolic Execution,” SIGSOFT Softw.
Eng. Notes, vol. 37, no. 6, pp. 1–5, Nov. 2012.

[56] A. Montaqim, “Top 14 industrial robot companies and how many robots
they have around the world,” https://roboticsandautomationnews.com/
2015/07/21/top-8-industrial-robot-companies-and-how-many-robots-
they-have-around-the-world/812/.

[57] J. Nellen, E. Ábrahám, and B. Wolters, “A CEGAR Tool for the Reach-
ability Analysis of PLC-Controlled Plants Using Hybrid Automata,” in
Formalisms for Reuse and Systems Integration, 2015.

[58] J. Nellen, K. Driessen, M. Neuhäuβer, E. Ábrahám, and B. Wolters,
“Two CEGAR-based Approaches for the Safety Verification of PLC-
controlled Plants,” Information Systems Frontiers, vol. 18, no. 5, pp.
927–952, Oct. 2016.

[59] Occupational Safety and Health Administration, “OSHA Instruction
PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assess-
ment,” https://www.osha.gov/enforcement/directives/std-01-12-002.

[60] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart, I. Beschast-
nikh, and Y. Brun, “Behavioral Resource-aware Model Inference,”
in Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE ’14), Sep 2014.

[61] S. Ould Biha, “A Formal Semantics of PLC Programs in Coq,” in
Proceedings of the 2011 IEEE 35th Annual Computer Software and
Applications Conference (COMPSAC’11), Jul 2011.

[62] S. C. Park, C. M. Park, G.-N. Wang, J. Kwak, and S. Yeo, “PLCStu-
dio: Simulation based PLC code verification,” 2008 Winter Simulation
Conference, pp. 222–228, 2008.

[63] T. Park and P. I. Barton, “Formal Verification of Sequence Controllers,”
Computers & Chemical Engineering, vol. 23, no. 11, pp. 1783–1793,
2000.

[64] B. Perelman, “The Top 3 Threats to Industrial Control Systems,” https:
//www.securityweek.com/top-3-threats-industrial-control-systems.

[65] J.-M. Roussel and B. Denis, “Safety Properties Verification of Lad-
der Diagram Programs,” Journal Européen des Systèmes Automatisés
(JESA), vol. 36, no. 7, pp. pp. 905–917, Jun. 2002.

[66] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A Symbolic Execution Framework for JavaScript,” in Proceedings of
the 2010 IEEE Symposium on Security and Privacy (Oakland’10), May
2010.

[67] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing Sensitive Data Transmission in Android for
Privacy Leakage Detection,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & Communications Security (CCS’13), Nov
2013.

[68] H. Zhang, D. D. Yao, N. Ramakrishnan, and Z. Zhang, “Causality
Reasoning About Network Events for Detecting Stealthy Malware
Activities,” Computers and Security, vol. 58, no. C, May 2016.

APPENDIX

A. Teach Pendant Code of FANUC Robot

Figure 8 presents the robot code implemented using teach
pendant language. This program is triggered by a PLC event
and can pass a part from CNC machine to conveyor.

B. Implementation of Static Analysis

We have implemented our static analyses in 7K lines of C++
code and 5K lines of Java code. Particularly, we convert PLC
ST code into C programs via MATIEC [13] compiler, and then
leverage Clang [3] to enable our analyses. To analyze teach
pendant programs in robot, we build a specific parser using
Antlr [2] and then perform control flow analysis on top of the
generated AST.

1 !Function only when receiving the signal
2 IF DI [0 : Deliver Part@PLC]=OFF, JMP LBL[3]
3 DO[6:Pickup_from_CNC1]=ON
4 DO[2:Part_AtConveyor@PLC]=OFF
5 CALL GO_HOME_AND_GET_VACUUM_GRIPPER
6 !Move to CNC1
7 J P[10:ROTARM] 80% FINE
8 L P[4:ROTARM2] 250mm/sec FINE
9 ...

10 !Pick up a part from CNC1
11 L P[9:CNCSIDE] 100mm/sec FINE
12 ...
13 LBL[1]
14 IF DI[7:Pickup_Confirmation]=ON, JMP LBL[2]
15 JMP LBL[1]
16 LBL[2]
17 WAIT .10(sec)
18 !Deposit part on conveyor
19 L P[10:ROTARM] 550mm/sec FINE
20 ...
21 !Notify that part was dropped on conveyor
22 DO[2 : Part AtConveyor@PLC]=ON
23 WAIT . 5 0 (s e c)
24 DO[2 : Part AtConveyor@PLC]=OFF
25 CALL RETURN_VACCUM_GRIPPER_AND_GO_HOME
26 DO[6:Pickup_from_CNC1]=OFF
27 LBL[3]

Fig. 8: Robot Teach Pendant Code for Delivering Parts

Note that the conversion from PLC to C code, using
MATIEC, follows a standardized (IEC 61131-3) mechanism.
We admit that some semantics, such as counters, timers, etc.
may not be very precisely translated to C code especially
because of the implicit effects caused by PLCs’ scan cycles.
Furthermore, different vendors may introduce unique features,
besides standard ones, that cannot be converted using existing
tools. To address these limitations, an alternative option is to
directly conduct analysis on native PLC code. We intend to
work on this as part of future work. However, we argue that our
graph construction methods are orthogonal to the underlying
program analysis. In fact, other (potentially advanced) analysis
techniques can be used to achieve our goal.

C. Algorithm to Infer Events From Data Traces.

Algorithm 3 depicts our algorithm to infer discrete events
from continuous data traces collected from physical ICS
testbeds.

D. Example of Event Sequence & Implementation

Motivating Example Figure 9 depicts how we apply a
generated event sequence to exercising PLC code of the
motivating example. In this chart, the x-axis represents time
(in seconds), which is ranging from Begin-of-Test (BOT) to
End-of-Test (EOT), and the y-axis denotes the list of events.
The effective duration of each event is illustrated as a thick
horizontal line, which begins with an empty circle and ends
with a filled circle or a cross. The filled circle means the event
is terminated by its sender, and the cross indicates it is disabled
due to PLC logic. The dotted part on a thick line represents the
possible range of starting point of an event. For instance, the

15

Algorithm 3 Event Inference
1: procedure INFEREVENTS(DT)
2: ET← ∅
3: for ∀DTi ∈ DT do
4: ETi ← ∅
5: {DT v0

i , DT v1
i , ..., DT

vk
i } ← DIVIDEBYVAR(DTi)

6: for ∀DT vp
i ∈ {DT v0

i , DT v1
i , ..., DT

vk
i } do

7: {d′0, d′1, ...d′m} ← DT
vp
i

8: l← 0
9: for l < m do

10: if d′l 6= d′l+1 then
11: e← (stated′

l+1
, timed′

l+1
)

12: ETi ← ETi ∪ e
13: end if
14: l← l + 1
15: end for
16: end for
17: SORTBYTIME(ETi)
18: ET← ET ∪ ETi
19: end for
20: end procedure

Pallet_Sensor

¬Part_Sensor

CNC_Part_Ready

Robot_Ready

¬Part_AtConveyor

RFID_IO_Complete

Part_AtConveyor

Tim
e

EO
T

BO
T T

T+
40T+
3

T+
15

T+
20

x
x

x

0.5 0.5

T+
9

Fig. 9: Generating Event Sequence for Motivating Example

starting time of event Part AtConveyor ranges from T + 3
to T+39.4 seconds due to the variation of robot delivery time,
where T is the time to signal Deliver Part. Similarly, the
beginning of RFID IO Complete is from T + 19 to T + 20.

This chart shows one permutation of the 7 input events.
Since the five events on the top do not bear any tem-
poral dependencies, they can be arranged in any orders,
one of which is depicted here. These 5 events are “Per-
manent” ones and are always enabled until programmati-
cally disabled (e.g., CNC Part Ready, Robot Ready and
¬ Part AtConveyor). Then, the starting timestamps of
RFID IO Complete and Part AtConveyor are relative
to the timestamp T at which all these five events have
been triggered. We discretize time with ρ being 5 and, in
this permutation, we choose to include one discrete version
for both of them, RFID IO CompleteT+20 and Part -

AtConveyorT+10. While RFID IO CompleteT+20 is a long-
lasting event, Part AtConveyorT+10 becomes inactive at
(T + 10) + 0.5. In consequence, this sequence will trigger
the aforementioned error because Part AtConveyorT+10 is
turned off prematurely.

Implementation. We simulate each sequence of events
through refreshing values of PLC variables when their cor-
responding events occur. We then persist the result values
into a file, which is accessed by PLC code at the beginning

Fig. 10: Fischertechnik Testbed for Manufacturing System

and end of every scan cycle. This is to mimic the input
and output phases of a PLC cycle. To reflect the potential
event termination originated from PLC logic, we compute
a conjunction between each generated event and its current
state in PLC, and use the result as the new input. For events
with certain durations, we set up timers to control their active
periods.

E. Details of TPTL Grammar

The grammar of TPTL is built from proposition symbols
and timing constraints by Boolean connective, temporal oper-
ators, and freeze quantifiers.

The Timing Constraints of TPTL are of the form π1 ≤ π2
and π1 ≡d π2 (time π1 is congruent to time π2 modulo the
constant d). The abbreviations x (for x + 0), = , < , > , ≥,
true, ¬, ∧, and ∨ are defined as usual.

The Temporal Operators can be either 1) next formula ©p
that asserts about a timed state sequence that the second state
in the sequence satisfies the proposition p, or 2) until formula
p1Up2 that asserts about a timed state sequence that there is a
state satisfying the proposition p2, and all states before this p2-
state satisfy the proposition p1. Additional temporal operators
are defined as usual. In particular, the eventually operator ♦φ
stands for trueUφ, and the always operator �φ stands for
¬♦¬φ.

The Freeze Quantifier can be associated to a variable x as
“x.” and it freezes x to the time of the local temporal context.

F. Fischertechnik Testbed

This testbed is divided into four cells (Cell 1 to Cell 4),
each of which is equipped with a conveyor belt and one or two
IR sensors that detect the presence of parts and is controlled
by a PLC. The testbed contains two CNC machines (CNC
1 and CNC 2) located in Cell 2 and Cell 3 respectively.
Two rams (Ram 1 and Ram 2) are deployed to move parts
from Cell 1 to Cell 2 and from Cell 3 to Cell 4 respectively.
These CNC machines and rams are also controlled by separate
PLCs. In this testbed, a PLC is emulated by a Raspberry Pi
board running an OpenPLC server to execute PLC code. All
Raspberry Pi boards are connected together via Ethernet and
linked via Modbus.

The system starts when a part enters the manufacturing line
from Cell 1 and is passed to Cell 2 by Ram 1 for the operation
processed by CNC 1. The part is then moved to Cell 3 for the
operation processed by CNC 2. When both CNC operations

16

CNC Side (CNC1)

Process_Start
R_IN, (P)

Process_End
R_OUT, (P)

[3s, 8s]

PLC Side

CNC2_Process
P_OUT, (P)

¬	C3_Working
P_OUT, (P)

¬ CNC2_IR
P_IN, (P)

¬ CNC2_Busy
P_IN, (P)

CNC Side (CNC2)

Process_Start
R_IN, (P)

Process_End
R_OUT

C2_Working
P_OUT, (P)

CNC1_Finished
P_IN, (P)

C3_Working
P_OUT, (P)

CNC2_Finished
P_IN, (P)

¬	C2_Working
P_OUT, (P)

CNC1_Process
P_OUT, (P)

¬ CNC1_IR
P_IN, (P)

¬ CNC1_Busy
P_IN, (P)

¬ R2_Busy
P_IN, (P)

[2s, 7s]

Fig. 11: A TECG of Case #7 (CNC-Part Collision)

are complete, the part is transferred to the conveyor in Cell 4
by Ram 2 and leaves the testbed.

It is possible to place multiple parts on the testbed at the
same time and process the parts sequentially. However, due
to physical limitations in the testbed (e.g., limited length for
the conveyor belt, long operation time for the rams and CNC
machines), restrictions should be taken into account when
developing the control logic.

G. Case Study on Scenario #7 CNC-Part Collision
Description. This case focuses on the section where a part

is processed by CNC 1 and to be transferred to CNC 2. Since
the testbed has a linear setup, the design and deployment of
the CNC machines are based upon an assumption: when a
CNC finishes an operation and is ready to discharge a part, its
successive CNC should also be ready to receive the part – this
avoids a downgrade in system throughput due to congestion in
the linear model. That is, in this case, CNC 2 is expected to be
ready (i.e., the preceding part has been discharged from CNC
2) when CNC 1 finishes a process and discharges a part. In a
normal manufacturing run, CNC 2 sends a signal to PLC when
a part is processed. PLC then activates Conveyor 3 to transfer
the part from CNC 2 to the next cell (Ram 2). Similarly, when
a part is processed by CNC 1, Conveyor 2 and 3 are activated
by PLC to transfer the part from CNC 1 to CNC 2.

A potential issue may occur in this linear setup when the
aforementioned assumption no longer holds due to changes in
time correlation between CNC machines. This could happen
either because of a worn-out component in a CNC that leads to
a longer CNC cycle time or a careless change in manufacturing
plan (e.g., an operator speeds up the conveyor with a desire
for higher production performance).

Safety Vetting. Using the proposed analysis method, we
first construct the TECG (as shown in Figure 11) by analyzing
the PLC and CNC code. In this case, the correlation between
the two CNC machines and PLC can be revealed in this step.
From this TECG, we can determine that the event CNC2 -

Process is followed by the event CNC2 Finished and
the event CNC1 Process is followed by the event CNC1 -

Finished. These event dependencies discovered from the

inter-device communication help reduce the number of possi-
ble permutations from 13700 to 898 (without taking time into
account). Then, we proceed to the temporal property mining
process that produces time correlation and temporal invariants
for the events. In this case, process times, TCNC1 Process and
TCNC2 Process, from both CNC machines are obtained, which
are associated to the time durations for Process Start →
Process End of both CNCs. With these time invariants being
considered, the number of permutations becomes 6442, 24358
and 79818 for VETPLC-TSEQS-2, VETPLC-TSEQS-5 and
VETPLC-TSEQS-10, respectively.

In this case, CNC 1 process time, TCNC1 Process, ranges
from 3 to 8 seconds and CNC 2 process time, TCNC2 Process,
ranges from 2 to 7 seconds. As mentioned above, anomalies
may occur when either CNC 2 takes longer to finish its task
or CNC 1 discharges a part earlier. Under either circumstance,
it is possible that the part discharged from CNC 1 arrives in
CNC 2 before the precedent part originally in CNC 2 fully
leaves the cell. As a result, the successive part may collide
with the preceding part as well as CNC 2 and cause safety
issues. This violates the safety specification, �(CNC Busy→
¬♦Part Arrival), that indicates that a part must not arrive
at a CNC when it is in a busy state. Through VETPLC-TSEQS
test processes, the system determines that this violation may
occur when CNC 1 is running at a speed from 3273 rpm
to 6000 rpm and CNC 2 is running at a speed from 1714
rpm to 2667 rpm with VETPLC-TSEQS-2. The same violation
can also be captured using VETPLC-TSEQS-5 and VETPLC-
TSEQS-10 with higher precision with respect to the error-
triggering speed ranges (see Table IV for details).

17

