
A Novel Side-Channel in Real-Time Schedulers
Chien-Ying (CY) Chen, Sibin Mohan, Rodolfo Pellizzoni,

Rakesh B. Bobba and Negar Kiyavash

25th IEEE Real-time And Embedded Technology And Applications Symposium (RTAS’19)
April 17, 2019

This work is supported by the National Science Foundation (NSF) under grant SaTC-1718952.

Imagine you (an attacker) have control of a real-time task
in an autonomous system

You want to take over control of the steering and throttle

2

3

PWM
Output Time

20ms 20ms

Attacker’s TaskPWM Update Task

Problem Statement

4

1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2

Goal: When do critical tasks arrive in the future?

Problem Statement

5

Goal: When do critical tasks arrive in the future?

0

offset
Task1

2 2 1 3 3 2 1 2 1 2 2 3 3 1 2 2 1 2 2 12

2 2 3 3 1 2 2 1 2 2 1 3 3 2 1 2 1 2 2 14

Different task initial offsets yield completely different schedules.

1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2

Problem Statement

6

Goal: When do critical tasks arrive in the future?

0

offset
Task1

2 2 1 3 3 2 1 2 1 2 2 3 3 1 2 2 1 2 2 12

2 2 3 3 1 2 2 1 2 2 1 3 3 2 1 2 1 2 2 14

Different task initial offsets yield completely different schedules.

1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2

Demonstrated a side-channel in real-time systems

System and Adversary Model

§ Uniprocessor, Fixed-Priority Hard Real-Time Systems
Attacker’s task (observer task)
Victim task

ØOther tasks

§ Requirements
ØThe attacker knows the victim task’s period
ØThe observer task has lower priority than the victim task.

§ Attack Goal
ØInfer the victim task’s initial offset and predict its future arrival time points.

periodic or sporadic

periodic

periodic or sporadic

7

>

Attack Scenario Overview

8

The attacker analyzes and infers precise
timing information of the victim task.

The attacker observes the schedule on
the victim system.

The attacker launches a major attack at
a future instant that can cause the most
amount of damage.

Major attack starts!

ScheduLeak Algorithms
Observer Task 𝜏"

Organize the execution intervals
in a schedule ladder diagram

Analyze and extract
Take union of the execution intervals

2

Reconstruct execution intervals of 𝜏" Observe and reconstruct
1

Infer the victim task’s initial offset

Predict the victim task’s future arrivals
Infer and predict

3

9

Observer Task 𝜏" Other Tasks

System Schedule Ground Truth:

The ScheduLeak Algorithms
Reconstruct execution intervals of 𝜏"

1

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1

Some tasks preempted the observer task.

What the attacker observes:

10

The observer task
has lower priority than

the victim task

System Schedule Ground Truth:

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1

Some tasks preempted the observer task.

What the attacker observes:

11

Organize the execution intervals
in a schedule ladder diagram

2

The ScheduLeak Algorithms

Observer Task 𝜏" Other Tasks

𝑡 + 0

𝑡 + 8

𝑡 + 16

…𝑡 + 24

𝑡

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1

Divide the timeline into sections of length = 8 (the victim task’s period) and stack:

Organize the execution intervals
in a schedule ladder diagram

2

The ScheduLeak Algorithms

12

𝑡 + 0

𝑡 + 8

𝑡 + 16

…𝑡 + 24

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1
Take union of the execution intervals

The ScheduLeak Algorithms
Organize the execution intervals

in a schedule ladder diagram

2

13

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1
Take union of the execution intervals

The ScheduLeak Algorithms
Organize the execution intervals

in a schedule ladder diagram

2

𝑡 + 0

𝑡 + 8

𝑡 + 16

…𝑡 + 24

14

Infer the victim task’s initial offset
3

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1

The ScheduLeak Algorithms

15

Infer the victim task’s initial offset
3

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1

The ScheduLeak Algorithms

16

We take the earliest time point of the
empty column as the inference of the
victim task’s initial offset.

+𝑎-

Occupied by the tasks with higher priorities
(e.g. the victim task)

Infer the victim task’s initial offset
3

𝑡 𝑡 + 8

Task ID Period Execution
Time

Task 4 15 1

Observer Task 10 2

Victim Task 8 2

Task 1 6 1

The ScheduLeak Algorithms

17

+𝑎-

𝑡 + +𝑎- + 𝑝- × 𝑇

The victim task’s future arrival times can be computed by

ladder diagram
starting point

Inferred victim task’s
Initial offset

victim task’s period desired arrival number

Predict the victim task’s future arrivals

Demonstration 2
Cache-Timing Side-Channel Attacks

20

Without ScheduLeak-based Information With ScheduLeak-based Information

Ø Probe (coarse-grained) memory usage of victim task
Ø Recover locations of interest points where memory

usage (of victim task) is high

Attack Goals:

Correlation between Observer Task & Victim Task

21

𝑡 + 0

𝑡 + 8

𝑡 + 16

…

𝑡 + 24

𝑡 + 30

A ladder diagram with width = 8 (the victim task’s period)

LCM(𝑝", 𝑝-)

Task Period

Observer Task 10

Victim Task 8

Correlation between Observer Task & Victim Task

22

𝑡 + 0

𝑡 + 8

𝑡 + 16

…

𝑡 + 24

LCM(𝑝", 𝑝-)

Task Period

Observer Task 10

Victim Task 8

Correlation between Observer Task & Victim Task

23

𝑡 + 0

𝑡 + 8

𝑡 + 16

…

𝑡 + 24

LCM(𝑝", 𝑝-)

𝐶 𝜏", 𝜏- =
𝑒"

𝐺𝐶𝐷(𝑝", 𝑝-)

Coverage Ratio

𝐶 𝜏", 𝜏- = 0.5 Task Period

Observer Task 10

Victim Task 8

24

𝑡 + 0

𝑡 + 8

𝑡 + 16

…

𝑡 + 24

LCM(𝑝", 𝑝-)

𝐶 𝜏", 𝜏- =
𝑒"

𝐺𝐶𝐷(𝑝", 𝑝-)

Coverage Ratio

𝐶 𝜏", 𝜏- = 1.0 Task Period

Observer Task 10

Victim Task 8

higher coverage ratio means better inference

Correlation between Observer Task & Victim Task

Simulation-based Performance Evaluation

§ Metrics
Inference Precision Ratio
the ratio of how close the inference to the true initial offset

Inference Success Rate
an inference is successful if attacker is able to exactly infer the victim task’s
initial offset

§ Variables

25

Task Set
Utilization

The Number
of Tasks

Attack
Duration

Sporadic
Task Ratio

Observer
Task Priority

Coverage
Ratio

Experiment Result Highlights

26

Attack
Duration

Precision
Ratio

Success
Rate

Coverage
Ratio

Task Set
Utilization

The Number
of Tasks

Sporadic
Task Ratio

Observer
Task Priority

Experiment Result Highlights

27

Attack
Duration

Precision
Ratio

Success
Rate

Coverage
Ratio

Task Set
Utilization

The Number
of Tasks

Sporadic
Task Ratio

Observer
Task Priority

5 ? 𝐿𝐶𝑀(𝑝", 𝑝-)

Precision Ratio = 0.99, Success Rate = 97%

Conclusion

29

The attacker infers precise timing
information of the victim task.

The attacker observes and analyzes the
schedule on the victim system.

The attacker launches a major attack at
a future instant that can cause the most
amount of damage.

Major attack starts!

30

This work is supported by the National Science Foundation (NSF)
under grant SaTC-1718952 and ONR N00014-13-1-0707.

Thank you.

Demo videos are available at https://scheduleak.github.io/

https://scheduleak.github.io/

Backup Materials

31

Implementation and Attack Case Studies

§ Cache-timing side-channel attacks
ØFreeRTOS
ØZedboard Xilinx Zynq®-7000
ØHardware-in-the-loop UAV

§ Interference with control (actuation signals) of CPS
ØReal-time Linux
ØRaspberry Pi 3 Model B
ØGround rover/quadcopter

36

Coverage Ratio

37

The coverage ratio can be loosely interpreted as the proportion of the time
columns covered by the observer task in the schedule ladder diagram.

𝐶 𝜏", 𝜏- =
𝑒"

𝐺𝐶𝐷(𝑝", 𝑝-)

Coverage ratio is defined as

If 𝐶 𝜏", 𝜏- ≥ 1, then the attacker can observe the victim task. Otherwise it is
not guaranteed that the victim task is observable by the attacker.

Experiment Results

38

Figure 7: The results of varying attack
duration. It indicates that longer attack
durations can increase the chance of suc-
cess and yield better inference precision.
The points are connected only as a guide.

Figure 8: The impact of sporadic tasks. It
indicates that the algorithms perform bet-
ter with sporadic tasks, with a (slightly)
ascending trend as the proportion of spo-
radic tasks increases.

Figure 9: The performance of the algo-
rithms when C(⌧o, ⌧v) < 1. Round and
triangular points represent the inference
success rate and the inference precision
ratio, respectively.

Figure 10: The impact of the number
of tasks and the task set utilization.
It shows that the algorithms perform
better with small number of tasks and
high task set utilization.

0.0

0.2

0.4

0.6

0.8

1.0

5 7 9 11 13 15
0%

20%

40%

60%

80%

100%

 priv=2
 priv=|hp(To)|

In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io
Su

cc
es

s
R

at
e

The Number of Tasks in a Task Set

(a) Grouped by the number of tasks. (b) Grouped by task set utilization.
Figure 11: The impact of the victim task’s position in a task set. It suggests that a
victim task with higher priority makes it hard for the algorithms to make a correct
inference. This result stands throughout different number of tasks in a task set as
well as different task set utilization. Also, a high priority victim task with low task set
utilization reduces the inference performance. This explains the huge drop in Figure 10.

produce inference with precision in a very short time and the
additional gains obtained from running longer are minuscule.
For this reason, we evaluate the algorithms with a duration of
10 · LCM(po, pv) for the rest of the experiments below.

2) The Number of Tasks and Task Set Utilization: Fig-
ure 10 displays a 3D graph that shows the averaged inference
precision ratio for each combination of the number of tasks
and the task utilization subgroup. The results suggest that
(i) the inference precision ratio decreases as the number of
tasks in a task set increases and (ii) the inference precision
ratio increases as the task set utilization increases. The worst
inference precision ratio happens when there are 15 tasks
in a task set with the utilization group [0.001, 0.1] – these
are boundary conditions for both the number tasks and the
utilization in this experiment. The impact of the number of
tasks is straightforward as having more tasks in hp(⌧o) means
that ⌧o will be preempted more frequently. This makes it hard
for the observer task to eliminate the false time columns.
For the impact of the task set utilization, a low utilization
value implies that the execution times of the tasks are small
and there exists a lot of gaps in the schedule. Hence, the
observer may get many small and scattered intervals. Since
we let the algorithms pick the largest interval to infer the
true arrival column, multiple small intervals are problematic

– the algorithm has a hard time picking the right interval that
contains the true arrival. Hence errors are compounded.

3) Priority of the Victim Task: We analyze the impact of
the victim task’s priority in a task set. From Section VII-A,
we consider two boundary conditions for the victim task’s
position: (i) priv = 2 and (ii) priv = |hp(⌧o)|. Figures 11(a)
and 11(b) present the experiment results for the two conditions.
Figure 11(a) shows that the huge drop in Figure 10 (as the
number of tasks increases) is mainly caused by the condition
priv = |hp(⌧o)|. Figure 11(b) also shows the similar indication
that the drop in low utilization groups in Figure 10 is a result
of the condition priv = |hp(⌧o)|. It’s worth noting that, since
we use the rate-monotonic algorithm to assign the priority,
priv = 2 means that ⌧v has a large period, hence potentially
has greater execution time. It benefits the algorithms as we
pick the largest interval to make an inference in the final step.

4) Sporadic and Periodic Tasks: We examine the impact
of the mix of sporadic and periodic tasks. We generate task
sets with 0%, 25%, 50%, 75% and 100% sporadic tasks in a
task set. The rest of the tasks in a task set are periodic tasks.
Comparing the result of all periodic tasks and the result of all
sporadic tasks shown in Figure 8, we find that the algorithms
perform better with more sporadic tasks. It shows an ascending
trend as the proportion of sporadic tasks increases. However,

10

Figure 7: The results of varying attack
duration. It indicates that longer attack
durations can increase the chance of suc-
cess and yield better inference precision.
The points are connected only as a guide.

Figure 8: The impact of sporadic tasks. It
indicates that the algorithms perform bet-
ter with sporadic tasks, with a (slightly)
ascending trend as the proportion of spo-
radic tasks increases.

Figure 9: The performance of the algo-
rithms when C(⌧o, ⌧v) < 1. Round and
triangular points represent the inference
success rate and the inference precision
ratio, respectively.

Figure 10: The impact of the number
of tasks and the task set utilization.
It shows that the algorithms perform
better with small number of tasks and
high task set utilization.

(a) Grouped by the number of tasks.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0%

20%

40%

60%

80%

100%In
fe

re
nc

e
Pr

ec
is

io
n

R
at

io
Su

cc
es

s
R

at
e

Task Set Utilization

 priv=2
 priv=|hp(To)|

(b) Grouped by task set utilization.
Figure 11: The impact of the victim task’s position in a task set. It suggests that a
victim task with higher priority makes it hard for the algorithms to make a correct
inference. This result stands throughout different number of tasks in a task set as
well as different task set utilization. Also, a high priority victim task with low task set
utilization reduces the inference performance. This explains the huge drop in Figure 10.

produce inference with precision in a very short time and the
additional gains obtained from running longer are minuscule.
For this reason, we evaluate the algorithms with a duration of
10 · LCM(po, pv) for the rest of the experiments below.

2) The Number of Tasks and Task Set Utilization: Fig-
ure 10 displays a 3D graph that shows the averaged inference
precision ratio for each combination of the number of tasks
and the task utilization subgroup. The results suggest that
(i) the inference precision ratio decreases as the number of
tasks in a task set increases and (ii) the inference precision
ratio increases as the task set utilization increases. The worst
inference precision ratio happens when there are 15 tasks
in a task set with the utilization group [0.001, 0.1] – these
are boundary conditions for both the number tasks and the
utilization in this experiment. The impact of the number of
tasks is straightforward as having more tasks in hp(⌧o) means
that ⌧o will be preempted more frequently. This makes it hard
for the observer task to eliminate the false time columns.
For the impact of the task set utilization, a low utilization
value implies that the execution times of the tasks are small
and there exists a lot of gaps in the schedule. Hence, the
observer may get many small and scattered intervals. Since
we let the algorithms pick the largest interval to infer the
true arrival column, multiple small intervals are problematic

– the algorithm has a hard time picking the right interval that
contains the true arrival. Hence errors are compounded.

3) Priority of the Victim Task: We analyze the impact of
the victim task’s priority in a task set. From Section VII-A,
we consider two boundary conditions for the victim task’s
position: (i) priv = 2 and (ii) priv = |hp(⌧o)|. Figures 11(a)
and 11(b) present the experiment results for the two conditions.
Figure 11(a) shows that the huge drop in Figure 10 (as the
number of tasks increases) is mainly caused by the condition
priv = |hp(⌧o)|. Figure 11(b) also shows the similar indication
that the drop in low utilization groups in Figure 10 is a result
of the condition priv = |hp(⌧o)|. It’s worth noting that, since
we use the rate-monotonic algorithm to assign the priority,
priv = 2 means that ⌧v has a large period, hence potentially
has greater execution time. It benefits the algorithms as we
pick the largest interval to make an inference in the final step.

4) Sporadic and Periodic Tasks: We examine the impact
of the mix of sporadic and periodic tasks. We generate task
sets with 0%, 25%, 50%, 75% and 100% sporadic tasks in a
task set. The rest of the tasks in a task set are periodic tasks.
Comparing the result of all periodic tasks and the result of all
sporadic tasks shown in Figure 8, we find that the algorithms
perform better with more sporadic tasks. It shows an ascending
trend as the proportion of sporadic tasks increases. However,

10

Success rate and precision ratio are
stabilized after 5 ? 𝐿𝐶𝑀(𝑝", 𝑝-)

• Success rate: 97%
• Precision ratio: 0.99

Note: each data point represents the mean of 12000 tasksets for the given observation duration.

Observation Duration
Experiment Results

39

the inference precision ratio decreases as
the number of tasks in a task set increases.

The inference precision ratio increases as the
task set utilization increases.

Number of Tasks & Taskset Utilization

Number of Tasks Taskset Utiliz
ation

The drop is mainly caused by a high priority victim task with low task set utilization.
Observation duration is 10 ? 𝐿𝐶𝑀(𝑝", 𝑝-).

Note:

Experiment Results

40

The algorithms perform better with
sporadic tasks, with a ascending trend as
the proportion of sporadic tasks increases.

0% means a taskset contains no sporadic task (all periodic tasks).
Observation duration is 10 ? 𝐿𝐶𝑀(𝑝", 𝑝-).

Proportion of Sporadic Tasks

Note:

The change in the performance is less than
1%, which is subtle.

Experiment Results

41

Higher coverage ratio yields better success
rate and inference precision.

Each data point represents the mean of 12000 tasksets.
Observation duration is 10 ? 𝐿𝐶𝑀(𝑝", 𝑝-).

Coverage Ratio

Note:

The success rate is about 59.9% (precision
ratio is 0.819) when the coverage ratio is
around 0.5.

Experiment Results

42

